655 research outputs found

    Decoding the activity of neuronal populations in macaque primary visual cortex

    Get PDF
    Visual function depends on the accuracy of signals carried by visual cortical neurons. Combining information across neurons should improve this accuracy because single neuron activity is variable. We examined the reliability of information inferred from populations of simultaneously recorded neurons in macaque primary visual cortex. We considered a decoding framework that computes the likelihood of visual stimuli from a pattern of population activity by linearly combining neuronal responses and tested this framework for orientation estimation and discrimination. We derived a simple parametric decoder assuming neuronal independence and a more sophisticated empirical decoder that learned the structure of the measured neuronal response distributions, including their correlated variability. The empirical decoder used the structure of these response distributions to perform better than its parametric variant, indicating that their structure contains critical information for sensory decoding. These results show how neuronal responses can best be used to inform perceptual decision-making

    Wavelength conversion by four-wave mixing in semiconductor optical amplifiers

    Get PDF
    Time-resolved spectral analysis is performed on 10 Gb/s signals wavelength converted by four-wave mixing (FWM) in semiconductor optical amplifiers. A pattern-dependent chirp resulting from parasitic gain modulation by the signal is measured and characterized as a function of the converter's pump-to-probe ratio. This chirp is found to be insignificant for pump-to-probe ratios exceeding 9 dB

    Cascaded wavelength conversion by four-wave mixing in a strained semiconductor optical amplifier at 10 Gb/s

    Get PDF
    We demonstrate for the first time cascaded wavelength conversion by four-wave mixing in a semiconductor optical amplifier. Bit-error-rate performance of <10^-9 at 10 Gb/s is achieved for two conversions of up to 9 nm down and up in wavelength. For two wavelength conversions of 5 nm down and up, a power penalty of 1.3 dB is measured. A system of two wavelength converters spanning 40 km of single-mode fiber is also demonstrated

    Wavelength conversion up to 18 nm at 10 Gb/s by four-wave mixing in a semiconductor optical amplifier

    Get PDF
    We characterize the conversion bandwidth of a four-wave mixing semiconductor optical amplifier wavelength converter. Conversion of 10-Gb/s signals with bit-error-rate (BER) performance of <10^-9 is demonstrated for wavelength down-shifts of up to 18 nm and upshifts of up to 10 nm

    Wavelength conversion for WDM communication systems using four-wavemixing in semiconductor optical amplifiers

    Get PDF
    Four-wave mixing (FWM) in semiconductor optical amplifiers is an attractive mechanism for wavelength conversion in wavelength-division multiplexed (WDM) systems since it provides modulation format and bit rate transparency over wide tuning ranges. A series of systems experiments evaluating several aspects of the performance of these devices at bit rates of 2.5 and 10 Gb/s are presented. Included are single-channel conversion over 18 nm of shift at 10 Gb/s, multichannel conversion, and cascaded conversions. In addition time resolved spectral analysis of wavelength conversion is presented

    Time-resolved Spectral Analysis Of Phase Conjugation By Four-wave Mixing In Semiconductor Optical Amplifiers

    Get PDF
    Optical phase conjugation provides a mechanism for achieving dispersion compensation in optical fibers. This has been demonstrated by four-wave mixing (FWM) in both fiber and semiconductor optical amplifiers (SOAs). Imperfect phase conjugation will prevent exact reconstruction of a dispersed data stream. Here we use time-resolved spectral analysis (TRSA) to evaluate the performance of FWM in SOAs for phase conjugation

    Spatiotemporal Patterns and Socioeconomic Dimensions of Shared Accommodations: The Case of AIRBNB in Los Angeles, California

    Get PDF
    In recent years, disruptive innovation by peer-to-peer platforms in a variety of industries, notably transportation and hospitality have altered the way individuals consume everyday essential services. With growth in sharing economy platforms such as Uber for ridesharing and Airbnb for short-term accommodations, interest in examining spatiotemporal patterns of participation in the sharing economy by suppliers and consumers is increasing. This research is motivated by key questions: who are the sharing economy workers, where are they located, and does their location influence their participation in the sharing economy? This paper is the first systematic effort to analyze spatiotemporal patterns of participation by hosts in the shared accommodation-based economy. Using three different kinds of shared accommodations listed in a 3-year period in the popular short-term accommodation platform, Airbnb, we examine spatiotemporal dimensions of host participation in a major U.S. market, Los Angeles CA. The paper also develops a conceptual model by positing associations of demographic, socioeconomic, occupational, and social capital attributes of hosts, along with their attitudes toward trust and greener consumption with hosts’ participation in a shared accommodation market. Results confirm host participation to be influenced by young dependency ratio, the potential of supplemental income, as well as the sustainability potential of collaborative consumption, along with finance, insurance, and real estate occupation, but not so much by trust for our overall study area. These results add new insights to limited prior knowledge about the sharing economy worker and have policy implications

    Quark-lepton mass unification at TeV scales

    Full text link
    A scenario combining a model of early (TeV) unification of quarks and leptons with the physics of large extra dimensions provides a natural mechanism linking quark and lepton masses at TeV scale. This has been dubbed as early quark-lepton mass unification by one of us (PQH) in one of the two models of early quark-lepton unification, which are consistent with data, namely SU(4)_PS \otimes SU(2)_L \otimes SU(2)_R \otimes SU(2)_H. In particular, it focused on the issue of naturally light Dirac neutrino. The present paper will focus on similar issues in the other model, namely SU(4)_PS \otimes SU(3)_L \otimes SU(3)_H.Comment: Accepted for publication in PRD: The new version is in agreement with the accepted manuscrip

    Evaluation of Deformable Boundary Condition Using Finite Element Method and Impact Test for Steel Tubes

    Get PDF
    Stainless steel pipelines are crucial components to transportation and storage in the oil and gas industry. However, the rise of random attacks and vandalism on these pipes for their valuable transport has led to more security and protection for incoming surface impacts. These surface impacts can lead to large global deformations of the pipe and place the pipe under strain, causing the eventual failure of the pipeline. Therefore, understanding how these surface impact loads affect the pipes is vital to improving the pipes’ security and protection. In this study, experimental test and finite element analysis (FEA) have been carried out on EN3B stainless steel specimens to study the impact behaviour. Low velocity impact tests at 9 m/s with 16 kg dome impactor was used to simulate for high momentum impact for localised failure. FEA models of clamped and deformable boundaries were modelled to study the effect of the boundaries on the pipes impact behaviour on its impact resistance, using experimental and FEA approach. Comparison of experimental and FE simulation shows good correlation to the deformable boundaries in order to validate the robustness of the FE model to be implemented in pipe models with complex anisotropic structure

    A Simple, Precise and Cost Effective PTFE Container Design Capable to Work in Domestic Microwave Oven

    Get PDF
    Starting from the first application of a microwave oven for sample preparation in 1975 for the purpose of wet ashing of biological samples using a domestic microwave oven, many microwave-assisted dissolution vessels have been developed. The advanced vessels are armed with special safety valve that release the excess of pressure while the vessels are in critical conditions due to applying high power of microwave. Nevertheless, this releasing of pressure may cause lose of volatile elements. In this study Teflon bottles are designed with relatively thicker wall compared to commercial ones and a silicone based polymer was used to prepare an O-ring which plays the role of safety valve. In this design, eight vessels are located in an ABS holder to keep them stable and safe. The advantage of these vessels is that they need only 2 mL of HNO3 and 1mL H2O2 to digest different environmental samples, namely, sludge, apple leave, peach leave, spinach leave and tomato leave. In order to investigate the performance of this design an ICP-MS instrument was applied for multi elemental analysis of 20 elements on the SRM of above environmental samples both using this design and a commercial microwave digestion design. Very comparable recoveries were obtained from this simple design with the commercial one. Considering the price of ultrapure chemicals and the amount of them which normally is about 8-10 mL, these simple vessels with the procedures that will be discussed in detail are very cost effective and very suitable for environmental studies
    • …
    corecore