55 research outputs found

    Perturbed disks get shocked. Binary black hole merger effects on accretion disks

    Full text link
    The merger process of a binary black hole system can have a strong impact on a circumbinary disk. In the present work we study the effect of both central mass reduction (due to the energy loss through gravitational waves) and a possible black hole recoil (due to asymmetric emission of gravitational radiation). For the mass reduction case and recoil directed along the disk's angular momentum, oscillations are induced in the disk which then modulate the internal energy and bremsstrahlung luminosities. On the other hand, when the recoil direction has a component orthogonal to the disk's angular momentum, the disk's dynamics are strongly impacted, giving rise to relativistic shocks. The shock heating leaves its signature in our proxies for radiation, the total internal energy and bremsstrahlung luminosity. Interestingly, for cases where the kick velocity is below the smallest orbital velocity in the disk (a likely scenario in real AGN), we observe a common, characteristic pattern in the internal energy of the disk. Variations in kick velocity simply provide a phase offset in the characteristic pattern implying that observations of such a signature could yield a measure of the kick velocity through electromagnetic signals alone.Comment: 10 pages, 13 figures. v2: Minor changes, version to be published in PR

    Method to estimate ISCO and ring-down frequencies in binary systems and consequences for gravitational wave data analysis

    Get PDF
    Recent advances in the description of compact binary systems have produced gravitational waveforms that include inspiral, merger and ring-down phases. Comparing results from numerical simulations with those of post-Newtonian (PN), and related, expansions has provided motivation for employing PN waveforms in near merger epochs when searching for gravitational waves and has encouraged the development of analytic fits to full numerical waveforms. The models and simulations do not yet cover the full binary coalescence parameter space. For these yet un-simulated regions, data analysts can still conduct separate inspiral, merger and ring-down searches. Improved knowledge about the end of the inspiral phase, the beginning of the merger, and the ring-down frequencies could increase the efficiency of both coherent inspiral-merger-ring-down (IMR) searches and searches over each phase separately. Insight can be gained for all three cases through a recently presented theoretical calculation, which, corroborated by the numerical results, provides an implicit formula for the final spin of the merged black holes, accurate to within 10% over a large parameter space. Knowledge of the final spin allows one to predict the end of the inspiral phase and the quasinormal mode ring-down frequencies, and in turn provides information about the bandwidth and duration of the merger. In this work we will discuss a few of the implications of this calculation for data analysis.Comment: Added references to section 3 14 pages 5 figures. Submitted to Classical and Quantum Gravit

    Elliptic and hyperelliptic magnetohydrodynamic equilibria

    Full text link
    The present study is a continuation of a previous one on "hyperelliptic" axisymmetric equilibria started in [Tasso and Throumoulopoulos, Phys. Plasmas 5, 2378 (1998)]. Specifically, some equilibria with incompressible flow nonaligned with the magnetic field and restricted by appropriate side conditions like "isothermal" magnetic surfaces, "isodynamicity" or P + B^2/2 constant on magnetic surfaces are found to be reducible to elliptic integrals. The third class recovers recent equilibria found in [Schief, Phys. Plasmas 10, 2677 (2003)]. In contrast to field aligned flows, all solutions found here have nonzero toroidal magnetic field on and elliptic surfaces near the magnetic axis.Comment: 9 page

    The ESPRI project: astrometric exoplanet search with PRIMA I. Instrument description and performance of first light observations

    Full text link
    The ESPRI project relies on the astrometric capabilities offered by the PRIMA facility of the Very Large Telescope Interferometer for the discovery and study of planetary systems. Our survey consists of obtaining high-precision astrometry for a large sample of stars over several years and to detect their barycentric motions due to orbiting planets. We present the operation principle, the instrument's implementation, and the results of a first series of test observations. A comprehensive overview of the instrument infrastructure is given and the observation strategy for dual-field relative astrometry is presented. The differential delay lines, a key component of the PRIMA facility which was delivered by the ESPRI consortium, are described and their performance within the facility is discussed. Observations of bright visual binaries are used to test the observation procedures and to establish the instrument's astrometric precision and accuracy. The data reduction strategy for astrometry and the necessary corrections to the raw data are presented. Adaptive optics observations with NACO are used as an independent verification of PRIMA astrometric observations. The PRIMA facility was used to carry out tests of astrometric observations. The astrometric performance in terms of precision is limited by the atmospheric turbulence at a level close to the theoretical expectations and a precision of 30 micro-arcseconds was achieved. In contrast, the astrometric accuracy is insufficient for the goals of the ESPRI project and is currently limited by systematic errors that originate in the part of the interferometer beamtrain which is not monitored by the internal metrology system. Our observations led to the definition of corrective actions required to make the facility ready for carrying out the ESPRI search for extrasolar planets.Comment: 32 pages, 39 figures, Accepted for publication in Astronomy and Astrophysic

    First-order cosmological phase transitions in the radiation dominated era

    Full text link
    We consider first-order phase transitions of the Universe in the radiation-dominated era. We argue that in general the velocity of interfaces is non-relativistic due to the interaction with the plasma and the release of latent heat. We study the general evolution of such slow phase transitions, which comprise essentially a short reheating stage and a longer phase equilibrium stage. We perform a completely analytical description of both stages. Some rough approximations are needed for the first stage, due to the non-trivial relations between the quantities that determine the variation of temperature with time. The second stage, instead, is considerably simplified by the fact that it develops at a constant temperature, close to the critical one. Indeed, in this case the equations can be solved exactly, including back-reaction on the expansion of the Universe. This treatment also applies to phase transitions mediated by impurities. We also investigate the relations between the different parameters that govern the characteristics of the phase transition and its cosmological consequences, and discuss the dependence of these parameters with the particle content of the theory.Comment: 38 pages, 3 figures; v2: Minor changes, references added; v3: several typos correcte

    Secluded Dark Matter Coupled to a Hidden CFT

    Full text link
    Models of secluded dark matter offer a variant on the standard WIMP picture and can modify our expectations for hidden sector phenomenology and detection. In this work we extend a minimal model of secluded dark matter, comprised of a U(1)'-charged dark matter candidate, to include a confining hidden-sector CFT. This provides a technically natural explanation for the hierarchically small mediator-scale, with hidden-sector confinement generating m_{gamma'}>0. Furthermore, the thermal history of the universe can differ markedly from the WIMP picture due to (i) new annihilation channels, (ii) a (potentially) large number of hidden-sector degrees of freedom, and (iii) a hidden-sector phase transition at temperatures T << M_{dm} after freeze out. The mediator allows both the dark matter and the Standard Model to communicate with the CFT, thus modifying the low-energy phenomenology and cosmic-ray signals from the secluded sector.Comment: ~50p, 8 figs; v2 JHEP versio

    Physics, Astrophysics and Cosmology with Gravitational Waves

    Get PDF
    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version <http://www.livingreviews.org/lrr-2009-2

    The CODEX-ESPRESSO experiment: cosmic dynamics, fundamental physics, planets and much more..

    Full text link
    CODEX, a high resolution, super-stable spectrograph to be fed by the E-ELT, the most powerful telescope ever conceived, will for the first time provide the possibility of directly measuring the change of the expansion rate of the Universe with time and much more, from the variability of fundamental constants to the search for other earths. A study for the implementation at the VLT of a precursor of CODEX, dubbed ESPRESSO, is presently carried out by a collaboration including ESO, IAC, INAF, IoA Cambridge and Observatoire de Geneve. The present talk is focused on the cosmological aspects of the experiment.Comment: 6 pages Latex, to appear in the proceedings of `A Century of Cosmology', S. Servolo, August 2007, to be published in Il Nuovo Ciment

    Modelling the final state from binary black-hole coalescences

    Full text link
    Over the last few years enormous progress has been made in the numerical description of the inspiral and merger of binary black holes. A particular effort has gone into the modelling of the physical properties of the final black hole, namely its spin and recoil velocity, as these quantities have direct impact in astrophysics, cosmology and, of course, general relativity. As numerical-relativity calculations still remain computationally very expensive and cannot be used to investigate the complete space of possible parameters, semi-analytic approaches have been developed and shown to reproduce with very high precision the numerical results. I here collect and review these efforts, pointing out the relative strengths and weaknesses, and discuss which directions are more promising to further improve them.Comment: Submitted to CQG, LISA-7 Special Issu

    Emergent Dark Matter, Baryon, and Lepton Numbers

    Get PDF
    We present a new mechanism for transferring a pre-existing lepton or baryon asymmetry to a dark matter asymmetry that relies on mass mixing which is dynamically induced in the early universe. Such mixing can succeed with only generic scales and operators and can give rise to distinctive relationships between the asymmetries in the two sectors. The mixing eliminates the need for the type of additional higher-dimensional operators that are inherent to many current asymmetric dark matter models. We consider several implementations of this idea. In one model, mass mixing is temporarily induced during a two-stage electroweak phase transition in a two Higgs doublet model. In the other class of models, mass mixing is induced by large field vacuum expectation values at high temperatures - either moduli fields or even more generic kinetic terms. Mass mixing models of this type can readily accommodate asymmetric dark matter masses ranging from 1 GeV to 100 TeV and expand the scope of possible relationships between the dark and visible sectors in such models.Comment: 36 pages, 5 figure
    corecore