1,616 research outputs found

    Caging Mechanism for a drag-free satellite position sensor

    Get PDF
    A disturbance compensation system for satellites based on the drag-free concept was mechanized and flown, using a spherical proof mass and a cam-guided caging mechanism. The caging mechanism controls the location of the proof mass for testing and constrains it during launch. Design requirements, design details, and hardware are described

    The Effects of Clumping and Substructure on ICM Mass Measurements

    Get PDF
    We examine an ensemble of 48 simulated clusters to determine the effects of small-scale density fluctuations and large-scale substructure on X-ray measurements of the intracluster medium (ICM) mass. We measure RMS density fluctuations in the ICM which can be characterized by a mean mass-weighted clumping factor C = /^2 between 1.3 and 1.4 within a density contrast of 500 times the critical density. These fluctuations arise from the cluster history of accretion shocks and major mergers, and their presence enhances the cluster's luminosity relative to the smooth case. We expect, therefore, that ICM mass measurements utilizing models which assume uniform density at a given radius carry a bias of order sqrt(C) = 1.16. We verify this result by performing ICM mass measurements on X-ray images of the simulations and finding the expected level of bias. The varied cluster morphologies in our ensemble also allow us to investigate the effects of departures from spherical symmetry on our measurements. We find that the presence of large-scale substructure does not further bias the resulting gas mass unless it is pronounced enough to produce a second peak in the image of at least 1% the maximum surface brightness. We analyze the subset of images with no secondary peaks and find a bias of 9% and a Gaussian random error of 4% in the derived mass.Comment: To appear in ApJ

    Heavy oil production with energy effective steam-assisted gravity drainage

    Full text link
    In reservoirs with extra heavy oil and bitumen, thermal methods are used to reduce the viscosity, in order to extract the oil. Steam-assisted gravity drainage (SAGD) is a thermal method where continuous steam injection is used. In this method, two horizontal wells are placed in parallel. The upper well injects steam and the lower well produces oil and condensed water. The continuous steam injection creates a chamber with uniform temperature. Heavy oil and bitumen reserves in Western Canada, which exceed 175 billion barrels, are becoming increasingly important petroleum sources due to the technical success of the SAGD processes. This study includes Computational fluid dynamics (CFD) modelling and simulations of a horizontal oil well with SAGD. The simulations are performed with inflow control devices (ICD) and autonomous inflow control valves (AICV) completion. In the SAGD processes, it is important that the residence time for steam in the reservoir is high enough to ensure that all the injected steam condenses in the reservoir to reduce the amount of steam injection and thereby making the SAGD process more energy effective. The simulations are carried out with ICD completion to delay the steam breakthrough and with AICV completion to prevent breakthrough of steam and water to the well. The numerical results showed that a most of the steam was produced together with the oil when ICD completion was used. AICV was able to close for steam and water, and the steam was thereby forced to condense in the reservoir, resulting in better utilization of the condensation energy

    The stenotic carotid artery plaque : prevalence, risk factors and relations to clinical disease : the Tromsø study

    Get PDF
    Stroke is the second leading cause of death in the world and is responsible for a high percentage of major disability, requiring substantial resources spent on care and rehabilitation. Atherosclerosis due to lipid accumulation in the vessel wall with formation of stenotic atheromatous plaques in the carotid bifurcation and/or the internal carotid artery is an important cause of stroke. In 1991, two large, multi-center trials reported that carotid endarterectomy was of benefit to patients with a degree of stenosis above 70%, and thus showed that the degree of stenosis was a major risk factor for ipsilateral stroke. However, it is well known that many high-grade stenoses remain stable and never cause cerebrovascular events, while others develop rapidly and produce serious, potentially life-threatening disease. While the majority of patients presenting with transient ischemic attack (TIA) and stroke has an ipsilateral carotid lesion, only about half of them have a hemodynamically significant carotid stenosis. Only 5-15% of strokes are heralded by a TIA. This has led to a search for additional risk factors which might help identify the individuals with a high risk for stroke

    Constraints on \Omega_0 and Cluster Evolution Using the ROSAT LogN-LogS

    Full text link
    We examine the likelihoods of different cosmological models and cluster evolutionary histories by comparing semi-analytical predictions of X-ray cluster number counts to observational data from the ROSAT satellite. We model cluster abundance as a function of mass and redshift using a Press-Schechter distribution, and assume the temperature T(M,z) and bolometric luminosity L_X(M,z) scale as power laws in mass and epoch, in order to construct expected counts as a function of X-ray flux. The L_X-M scaling is fixed using the local luminosity function while the degree of evolution in the X-ray luminosity with redshift L_X \propto (1+z)^s is left open, with s an interesting free parameter which we investigate. We examine open and flat cosmologies with initial, scale-free fluctuation spectra having indices n = 0, -1 and -2. An independent constraint arising from the slope of the luminosity-temperature relation strongly favors the n = -2 spectrum. The expected counts demonstrate a strong dependence on \Omega_0 and s, with lesser dependence on \lambda_0 and n. Comparison with the observed counts reveals a "ridge" of acceptable models in the \Omega_0 - s plane, roughly following the relation s = 6 \Omega_0 and spanning low-density models with a small degree of evolution to \Omega = 1 models with strong evolution. Models with moderate evolution are revealed to have a strong lower limit of \Omega_0 \gtrsim 0.3, and low-evolution models imply that \Omega_0 < 1 at a very high confidence level. We suggest observational tests for breaking the degeneracy along this ridge, and discuss implications for evolutionary histories of the intracluster medium.Comment: MNRAS LaTeX style format, submitted to MNRAS 3/26/97. Thirteen pages, eleven postscript figures. Uses epsf macros to include figure

    Branching Instabilities in Rapid Fracture: Dynamics and Geometry

    Full text link
    We propose a theoretical model for branching instabilities in 2-dimensional fracture, offering predictions for when crack branching occurs, how multiple cracks develop, and what is the geometry of multiple branches. The model is based on equations of motion for crack tips which depend only on the time dependent stress intensity factors. The latter are obtained by invoking an approximate relation between static and dynamic stress intensity factors, together with an essentially exact calculation of the static ones. The results of this model are in good agreement with a sizeable quantity of experimental data.Comment: 9 pages, 11 figure

    Roughening of Fracture Surfaces: the Role of Plastic Deformations

    Full text link
    Post mortem analysis of fracture surfaces of ductile and brittle materials on the μ\mum-mm and the nm scales respectively, reveal self affine graphs with an anomalous scaling exponent ζ0.8\zeta\approx 0.8. Attempts to use elasticity theory to explain this result failed, yielding exponent ζ0.5\zeta\approx 0.5 up to logarithms. We show that when the cracks propagate via plastic void formations in front of the tip, followed by void coalescence, the voids positions are positively correlated to yield exponents higher than 0.5.Comment: 4 pages, 6 figure

    Tip Splittings and Phase Transitions in the Dielectric Breakdown Model: Mapping to the DLA Model

    Full text link
    We show that the fractal growth described by the dielectric breakdown model exhibits a phase transition in the multifractal spectrum of the growth measure. The transition takes place because the tip-splitting of branches forms a fixed angle. This angle is eta dependent but it can be rescaled onto an ``effectively'' universal angle of the DLA branching process. We derive an analytic rescaling relation which is in agreement with numerical simulations. The dimension of the clusters decreases linearly with the angle and the growth becomes non-fractal at an angle close to 74 degrees (which corresponds to eta= 4.0 +- 0.3).Comment: 4 pages, REVTex, 3 figure
    corecore