7,738 research outputs found

    Comet Halley and history

    Get PDF
    A history of Halley's Comet is presented. Comets Kohoutek and Ikeya-Seki are discussed

    Nongravitational forces on comets

    Get PDF
    Methods are presented and discussed for determining the effects of nongravitational forces on the orbits of comets. These methods are applied to short-period and long-period comets. Results are briefly described

    Routh reduction and the class of magnetic Lagrangian systems

    Get PDF
    In this paper, some new aspects related to Routh reduction of Lagrangian systems with symmetry are discussed. The main result of this paper is the introduction of a new concept of transformation that is applicable to systems obtained after Routh reduction of Lagrangian systems with symmetry, so-called magnetic Lagrangian systems. We use these transformations in order to show that, under suitable conditions, the reduction with respect to a (full) semi-direct product group is equivalent to the reduction with respect to an Abelian normal subgroup. The results in this paper are closely related to the more general theory of Routh reduction by stages.Comment: 23 page

    Astrometric observations of comets and asteroids and subsequent orbital investigations

    Get PDF
    Comets and minor planets were observed with a 155 cm reflector. Their orbital positions are presented in tabular form

    On the Size-Dependence of the Inclination Distribution of the Main Kuiper Belt

    Get PDF
    We present a new analysis of the currently available orbital elements for the known Kuiper belt objects. In the non-resonant, main Kuiper belt we find a statistically significant relationship between an object's absolute magnitude (H) and its inclination (i). Objects with H~170 km for a 4% albedo) have higher inclinations than those with H>6.5 (radii >~ 170 km). We have shown that this relationship is not caused by any obvious observational bias. We argue that the main Kuiper belt consists of the superposition of two distinct distributions. One is dynamically hot with inclinations as large as \~35 deg and absolute magnitudes as bright as 4.5; the other is dynamically cold with i6.5. The dynamically cold population is most likely dynamically primordial. We speculate on the potential causes of this relationship.Comment: 14 pages, 6 postscript figure

    Cometary Astrometry

    Get PDF
    Modern techniques for making cometary astrometric observations, reducing these observations, using accurate reference star catalogs, and computing precise orbits and ephemerides are discussed in detail and recommendations and suggestions are given in each area

    The study of the physics of cometary nuclei

    Get PDF
    A semiannual progress report describing the work completed during the period 1 September 1975 to 29 February 1976 on the physics of cometary nuclei was given. The following items were discussed: (1) a paper entitled ""A speculation about comets and the earth'', (2) a chapter entitled"" The physics of comets'' for ""Reviews of Astronomy and Astrophysics'', (3) continuing work on split comets, and (4) results dealing with a new application of nongravitational solar-radial forces as a measure of comet nucleus dimensions and activity

    Nonaffine Correlations in Random Elastic Media

    Full text link
    Materials characterized by spatially homogeneous elastic moduli undergo affine distortions when subjected to external stress at their boundaries, i.e., their displacements \uv (\xv) from a uniform reference state grow linearly with position \xv, and their strains are spatially constant. Many materials, including all macroscopically isotropic amorphous ones, have elastic moduli that vary randomly with position, and they necessarily undergo nonaffine distortions in response to external stress. We study general aspects of nonaffine response and correlation using analytic calculations and numerical simulations. We define nonaffine displacements \uv' (\xv) as the difference between \uv (\xv) and affine displacements, and we investigate the nonaffinity correlation function G=\mathcal{G} = and related functions. We introduce four model random systems with random elastic moduli induced by locally random spring constants, by random coordination number, by random stress, or by any combination of these. We show analytically and numerically that G\mathcal{G} scales as A |\xv|^{-(d-2)} where the amplitude AA is proportional to the variance of local elastic moduli regardless of the origin of their randomness. We show that the driving force for nonaffine displacements is a spatial derivative of the random elastic constant tensor times the constant affine strain. Random stress by itself does not drive nonaffine response, though the randomness in elastic moduli it may generate does. We study models with both short and long-range correlations in random elastic moduli.Comment: 22 Pages, 18 figures, RevTeX
    corecore