1,792 research outputs found
Sampled data analysis of a computer-controlled manipulator
A comprehensive sampled data analysis of a computer-controlled manipulator is presented in terms of root loci for gain selection and transient responses to step input functions. All parameter values and their derivations where applicable were tabulated. The analysis, while quite specific, uses normalized gain parameters, which allows the results to be applied to any similar system regardless of individual hardware parameter values
Noisy metrology beyond the standard quantum limit
Parameter estimation is of fundamental importance in areas from atomic
spectroscopy and atomic clocks to gravitational wave detection. Entangled
probes provide a significant precision gain over classical strategies in the
absence of noise. However, recent results seem to indicate that any small
amount of realistic noise restricts the advantage of quantum strategies to an
improvement by at most a multiplicative constant. Here, we identify a relevant
scenario in which one can overcome this restriction and attain superclassical
precision scaling even in the presence of uncorrelated noise. We show that
precision can be significantly enhanced when the noise is concentrated along
some spatial direction, while the Hamiltonian governing the evolution which
depends on the parameter to be estimated can be engineered to point along a
different direction. In the case of perpendicular orientation, we find
superclassical scaling and identify a state which achieves the optimum.Comment: Erroneous expressions with inconsistent units have been corrected. 5
pages, 3 figures + Appendi
Remnant Fermi Surfaces in Photoemission
Recent experiments have introduced a new concept for analyzing the
photoemission spectra of correlated electrons -- the remnant Fermi surface
(rFs), which can be measured even in systems which lack a conventional Fermi
surface. Here, we analyze the rFs in a number of interacting electron models,
and find that the results fall into two classes. For systems with pairing
instabilities, the rFs is an accurate replica of the true Fermi surface. In the
presence of nesting instabilities, the rFs is a map of the resulting
superlattice Brillouin zone. The results suggest that the gap in Ca_2CuO_2Cl_2
is of nesting origin.Comment: 4 pages LaTex, 3 ps figure
Properties of electrons near a Van Hove singularity
The Fermi surface of most hole-doped cuprates is close to a Van Hove
singularity at the M point. A two-dimensional electronic system, whose Fermi
surface is close to a Van Hove singularity shows a variety of weak coupling
instabilities. It is a convenient model to study the interplay between
antiferromagnetism and anisotropic superconductivity. The renormalization group
approach is reviewed with emphasis on the underlying physical processes.
General properties of the phase diagram and possible deformations of the Fermi
surface due to the Van Hove proximity are described.Comment: Proceedings of SNS-01 to appear in the Journal of Physics and
Chemistry of Solids, SNS-0
Proposal to determine the Fermi-surface topology of a doped iron-based superconductor using bulk-sensitive Fourier-transform Compton scattering
We have carried out first-principles calculations of the Compton scattering
spectra to demonstrate that the filling of the hole Fermi surface in
LaOFFeAs produces a distinct signature in the Fourier transformed
Compton spectrum when the momentum transfer vector lies along the [100]
direction. We thus show how the critical concentration , where hole Fermi
surface pieces are filled up and the superconductivity mediated by
antiferromagnetic spin fluctuations is expected to be suppressed, can be
obtained in a bulk-sensitive manner.Comment: 4 pages, 6 figures, accepted in Physical Review
Flux Phase as a Dynamic Jahn-Teller Phase: Berryonic Matter in the Cuprates?
There is considerable evidence for some form of charge ordering on the
hole-doped stripes in the cuprates, mainly associated with the low-temperature
tetragonal phase, but with some evidence for either charge density waves or a
flux phase, which is a form of dynamic charge-density wave. These three states
form a pseudospin triplet, demonstrating a close connection with the E X e
dynamic Jahn-Teller effect, suggesting that the cuprates constitute a form of
Berryonic matter. This in turn suggests a new model for the dynamic Jahn-Teller
effect as a form of flux phase. A simple model of the Cu-O bond stretching
phonons allows an estimate of electron-phonon coupling for these modes,
explaining why the half breathing mode softens so much more than the full
oxygen breathing mode. The anomalous properties of provide a coupling
(correlated hopping) which acts to stabilize density wave phases.Comment: Major Revisions: includes comparisons with specific cuprate phonon
modes, 16 eps figures, revte
Pinned Balseiro-Falicov Model of Tunneling and Photoemission in the Cuprates
The smooth evolution of the tunneling gap of Bi_2Sr_2CaCu_2O_8 with doping
from a pseudogap state in the underdoped cuprates to a superconducting state at
optimal and overdoping, has been interpreted as evidence that the pseudogap
must be due to precursor pairing. We suggest an alternative explanation, that
the smoothness reflects a hidden SO(N) symmetry near the (pi,0) points of the
Brillouin zone (with N = 3, 4, 5, or 6). Because of this symmetry, the
pseudogap could actually be due to any of a number of nesting instabilities,
including charge or spin density waves or more exotic phases. We present a
detailed analysis of this competition for one particular model: the pinned
Balseiro-Falicov model of competing charge density wave and (s-wave)
superconductivity. We show that most of the anomalous features of both
tunneling and photoemission follow naturally from the model, including the
smooth crossover, the general shape of the pseudogap phase diagram, the
shrinking Fermi surface of the pseudogap phase, and the asymmetry of the
tunneling gap away from optimal doping. Below T_c, the sharp peak at Delta_1
and the dip seen in the tunneling and photoemission near 2Delta_1 cannot be
described in detail by this model, but we suggest a simple generalization to
account for inhomogeneity, which does provide an adequate description. We show
that it should be possible, with a combination of photoemission and tunneling,
to demonstrate the extent of pinning of the Fermi level to the Van Hove
singularity. A preliminary analysis of the data suggests pinning in the
underdoped, but not in the overdoped regime.Comment: 18 pages LaTeX, 26 ps. figure
Strong correlation effects and optical conductivity in electron doped cuprates
We demonstrate that most features ascribed to strong correlation effects in
various spectroscopies of the cuprates are captured by a calculation of the
self-energy incorporating effects of spin and charge fluctuations. The self
energy is calculated over the full doping range of electron-doped cuprates from
half filling to the overdoped system. The spectral function reveals four
subbands, two widely split incoherent bands representing the remnant of the
split Hubbard bands, and two additional coherent, spin- and charge-dressed
in-gap bands split by a spin-density wave, which collapses in the overdoped
regime. The incoherent features persist to high doping, producing a remnant
Mott gap in the optical spectra, while transitions between the in-gap states
lead to pseudogap features in the mid-infrared.Comment: 5 pages, 4 figure
- …
