74 research outputs found

    Risk Factors for Graft-versus-Host Disease in Haploidentical Hematopoietic Cell Transplantation Using Post-Transplant Cyclophosphamide

    Get PDF
    Post-transplant cyclophosphamide (PTCy) has significantly increased the successful use of haploidentical donors with a relatively low incidence of graft-versus-host disease (GVHD). Given its increasing use, we sought to determine risk factors for GVHD after haploidentical hematopoietic cell transplantation (haplo-HCT) using PTCy. Data from the Center for International Blood and Marrow Transplant Research on adult patients with acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, or chronic myeloid leukemia who underwent PTCy-based haplo-HCT (2013 to 2016) were analyzed and categorized into 4 groups based on myeloablative (MA) or reduced-intensity conditioning (RIC) and bone marrow (BM) or peripheral blood (PB) graft source. In total, 646 patients were identified (MA-BM = 79, MA-PB = 183, RIC-BM = 192, RIC-PB = 192). The incidence of grade 2 to 4 acute GVHD at 6 months was highest in MA-PB (44%), followed by RIC-PB (36%), MA-BM (36%), and RIC-BM (30%) (P =.002). The incidence of chronic GVHD at 1 year was 40%, 34%, 24%, and 20%, respectively (P <.001). In multivariable analysis, there was no impact of stem cell source or conditioning regimen on grade 2 to 4 acute GVHD; however, older donor age (30 to 49 versus <29 years) was significantly associated with higher rates of grade 2 to 4 acute GVHD (hazard ratio [HR], 1.53; 95% confidence interval [CI], 1.11 to 2.12; P =.01). In contrast, PB compared to BM as a stem cell source was a significant risk factor for the development of chronic GVHD (HR, 1.70; 95% CI, 1.11 to 2.62; P =.01) in the RIC setting. There were no differences in relapse or overall survival between groups. Donor age and graft source are risk factors for acute and chronic GVHD, respectively, after PTCy-based haplo-HCT. Our results indicate that in RIC haplo-HCT, the risk of chronic GVHD is higher with PB stem cells, without any difference in relapse or overall survival

    Metabolic Syndrome and Cardiovascular Disease after Hematopoietic Cell Transplantation: Screening and Preventive Practice Recommendations from the CIBMTR and EBMT

    Get PDF
    Metabolic syndrome (MetS) is a constellation of cardiovascular risk factors that increases the risk of cardiovascular disease, diabetes mellitus, and all-cause mortality. Long-term survivors of hematopoietic cell transplantation (HCT) have a substantial risk of developing MetS and cardiovascular disease, with an estimated prevalence of MetS of 31% to 49% among HCT recipients. Although MetS has not yet been proven to impact cardiovascular risk after HCT, an understanding of the incidence and risk factors for MetS in HCT recipients can provide the foundation to evaluate screening guidelines and develop interventions that may mitigate cardiovascular-related mortality. A working group was established through the Center for International Blood and Marrow Transplant Research and the European Group for Blood and Marrow Transplantation with the goal to review literature and recommend practices appropriate to HCT recipients. Here we deliver consensus recommendations to help clinicians provide screening and preventive care for MetS and cardiovascular disease among HCT recipients. All HCT survivors should be advised of the risks of MetS and encouraged to undergo recommended screening based on their predisposition and ongoing risk factors

    Secondary solid cancer screening following hematopoietic cell transplantation

    Get PDF
    Hematopoietic stem cell transplant (HCT) recipients have a substantial risk of developing secondary solid cancers, particularly beyond 5 years after HCT and without reaching a plateau overtime. A working group was established through the Center for International Blood and Marrow Transplant Research and the European Group for Blood and Marrow Transplantation with the goal to facilitate implementation of cancer screening appropriate to HCT recipients. The working group reviewed guidelines and methods for cancer screening applicable to the general population and reviewed the incidence and risk factors for secondary cancers after HCT. A consensus approach was used to establish recommendations for individual secondary cancers. The most common sites include oral cavity, skin, breast and thyroid. Risks of cancers are increased after HCT compared with the general population in skin, thyroid, oral cavity, esophagus, liver, nervous system, bone and connective tissues. Myeloablative TBI, young age at HCT, chronic GVHD and prolonged immunosuppressive treatment beyond 24 months were well-documented risk factors for many types of secondary cancers. All HCT recipients should be advised of the risks of secondary cancers annually and encouraged to undergo recommended screening based on their predisposition. Here we propose guidelines to help clinicians in providing screening and preventive care for secondary cancers among HCT recipients

    Allogeneic hematopoietic cell transplantation for advanced polycythemia vera and essential thrombocythemia

    No full text
    Allogeneic hematopoietic cell transplantation (HCT) is curative for selected patients with advanced essential thrombocythemia (ET) or polycythemia vera (PV). From 1990 to 2007, 75 patients with ET (median age 49 years) and 42 patients with PV (median age 53 years) underwent transplantations at the Fred Hutchinson Cancer Research Center (FHCRC; n = 43) or at other Center for International Blood and Marrow Transplant Research (CIBMTR) centers (n = 74). Thirty-eight percent of the patients had splenomegaly and 28% had a prior splenectomy. Most patients (69% for ET and 67% for PV) received a myeloablative (MA) conditioning regimen. Cumulative incidence of neutrophil engraftment at 28 days was 88% for ET patients and 90% for PV patients. Acute graft-versus-host disease (aGVHD) grades II to IV occurred in 57% and 50% of ET and PV patients, respectively. The 1-year treatment-related mortality (TRM) was 27% for ET and 22% for PV. The 5-year cumulative incidence of relapse was 13% for ET and 30% for PV. Five-year survival/progression-free survival (PFS) was 55%/47% and 71%/48% for ET and PV, respectively. Patients without splenomegaly had faster neutrophil and platelet engraftment, but there were no differences in TRM, survival, or PFS. Presence of myelofibrosis (MF) did not affect engraftment or TRM. Over 45% of the patients who undergo transplantations for ET and PV experience long-term PFS.Karen K. Ballen, Ann E. Woolfrey, Xiaochun Zhu, Kwang Woo Ahn, Baldeep Wirk ... Mary M. Horowitz ... et al

    Category IV indications for therapeutic apheresis: ASFA fourth special issue

    No full text
    The American Society for Apheresis (ASFA) Committee on Clinical Applications systematically and critically reviews published information on the use of therapeutic apheresis in clinical practice. On the basis of this review, selected diseases are assigned one of five categories (category I, II, III, IV, and P). The diseases, which were classified as category IV indications, and the rationale for such assignment are reviewed in this article. The diseases assigned to category I, II, III, and newly created category P are discussed in a separate article in this issue

    Guidelines on the use of therapeutic apheresis in clinical practice: evidence-based approach from the Apheresis Applications Committee of the American Society for Apheresis

    No full text
    The American Society for Apheresis (ASFA) Apheresis Applications Committee is charged with a review and categorization of indications for therapeutic apheresis. This elaborate process had been undertaken every 7 years resulting in three prior publications in 1986, 1993, and 2000 of The ASFA Special Issues. This article is the integral part of the Fourth ASFA Special Issue. The Fourth ASFA Special Issue is significantly modified in comparison to the previous editions. A new concept of a fact sheet has been introduced. The fact sheet succinctly summarizes the evidence for the use of therapeutic apheresis. A detailed description of the fact sheet is provided. The article consists of 53 fact sheets devoted to each disease entity currently categorized by the ASFA. Categories I, II, and III are defined as previously in the Third Special Issue. However, a few new therapeutic apheresis modalities, not yet approved in the United States or are currently in clinical trials, have been assigned category P (pending) by the ASFA Clinical Categories Subcommittee. The diseases assigned to category IV are discussed in a separate article in this issue
    • …
    corecore