240 research outputs found

    The Composite Fermion Hierarchy: Condensed States of Composite Fermion Excitations?

    Full text link
    A composite Fermion hierarchy theory is constructed in a way related to the original Haldane picture by applying the composite Fermion (CF) transformation to quasiparticles of Jain states. It is shown that the Jain theory coincides with the Haldane hierarchy theory for principal CF fillings. Within the Fermi liquid approach for few electron systems on the sphere a simple interpretation of many-quasiparticle spectra is given and provides an explanation of failure of CF hierarchy picture when applied to the hierarchical 4/114/11 state.Comment: 6 pages, Revtex, 4 figures in PostScript, submitted to Phys. Rev. Let

    Quantum Hall Spherical Systems: the Filling Fraction

    Get PDF
    Within the newly formulated composite fermion hierarchy the filling fraction of a spherical quantum Hall system is obtained when it can be expressed as an odd or even denominator fraction. A plot of ν2SN1\nu\frac{2S}{N-1} as a function of 2S2S for a constant number of particles (up to N=10001) exhibits structure of the fractional quantum Hall effect. It is confirmed that νe+νh=1\nu_e +\nu_h=1 for all particle-hole conjugate systems, except systems with Ne=NhN_e =N_h, and Ne=Nh±1N_e=N_h \pm 1.Comment: 3 pages, Revtex, 7 PostScript figures, submitted to Phys. Rev. B Rapid Communicatio

    Mid-Infrared Ethane Emission on Neptune and Uranus

    Full text link
    We report 8- to 13-micron spectral observations of Neptune and Uranus from the NASA Infrared Telescope Facility spanning more than a decade. The spectroscopic data indicate a steady increase in Neptune's mean atmospheric 12-micron ethane emission from 1985 to 2003, followed by a slight decrease in 2004. The simplest explanation for the intensity variation is an increase in stratospheric effective temperature from 155 +/- 3 K in 1985 to 176 +/- 3 K in 2003 (an average rate of 1.2 K/year), and subsequent decrease to 165 +/- 3 K in 2004. We also detected variation of the overall spectral structure of the ethane band, specifically an apparent absorption structure in the central portion of the band; this structure arises from coarse spectral sampling coupled with a non-uniform response function within the detector elements. We also report a probable direct detection of ethane emission on Uranus. The deduced peak mole fraction is approximately an order of magnitude higher than previous upper limits for Uranus. The model fit suggests an effective temperature of 114 +/- 3 K for the globally-averaged stratosphere of Uranus, which is consistent with recent measurements indicative of seasonal variation.Comment: Accepted for publication in ApJ. 16 pages, 10 figures, 2 table

    Copper Heat Exchanger for the External Auxiliary Bus-Bars Routing Line in the LHC Insertion Regions

    Get PDF
    The corrector magnets and the main quadrupoles of the LHC dispersion suppressors are powered by a special superconducting line (called auxiliary bus-bars line N), external to the cold mass and housed in a 50 mm diameter stainless steel tube fixed to the cold mass. As the line is periodically connected to the cold mass, the same gaseous and liquid helium cools both the magnets and the line. The final sub-cooling process (from around 4.5 K down to 1.9 K) consists in the phase transformation from liquid to superfluid helium. Heat is extracted from the line through the magnets via their point of junction. In dispersion suppressor zones, approximately 40 m long, the sub-cooling of the line is slightly delayed with respect to the magnets. This might have an impact on the readiness of the accelerator for operation. In order to accelerate the process, a special heat exchanger has been designed. It is located in the middle of the dispersion suppressor portion of the line. Its main function consists in providing a local point of heat extraction, creating two additional lambda fronts that propagate in opposite directions towards the extremities of the line. Both the numerical model and the sub-cooling analysis are presented in the paper for different configurations of the line. The design, manufacturing and integration aspects of the heat exchanger are described

    Role of surface microgeometries on electron escape probability and secondary electron yield of metal surfaces

    Get PDF
    The influence of microgeometries on the Secondary Electron Yield (SEY) of surfaces is investigated. Laser written structures of different aspect ratio (height to width) on a copper surface tuned the SEY of the surface and reduced its value to less than unity. The aspect ratio of microstructures was methodically controlled by varying the laser parameters. The results obtained corroborate a recent theoretical model of SEY reduction as a function of the aspect ratio of microstructures. Nanostructures - which are formed inside the microstructures during the interaction with the laser beam - provided further reduction in SEY comparable to that obtained in the simulation of structures which were coated with an absorptive layer suppressing secondary electron emission

    Evolution from protoplanetary to debris discs: The transition disc around HD 166191

    Full text link
    HD 166191 has been identified by several studies as hosting a rare and extremely bright warm debris disc with an additional outer cool disc component. However, an alternative interpretation is that the star hosts a disc that is currently in transition between a full gas disc and a largely gas-free debris disc. With the help of new optical to mid-IR spectra and Herschel imaging, we argue that the latter interpretation is supported in several ways: i) we show that HD 166191 is co-moving with the ~4 Myr-old Herbig Ae star HD 163296, suggesting that the two have the same age, ii) the disc spectrum of HD 166191 is well matched by a standard radiative transfer model of a gaseous protoplanetary disc with an inner hole, and iii) the HD 166191 mid-IR silicate feature is more consistent with similarly primordial objects. We note some potential issues with the debris disc interpretation that should be considered for such extreme objects, whose lifetime at the current brightness is mush shorter than the stellar age, or in the case of the outer component requires a mass comparable to the solid component of the Solar nebula. These aspects individually and collectively argue that HD 166191 is a 4-5 Myr old star that hosts a gaseous transition disc. Though it does not argue in favour of either scenario, we find strong evidence for 3-5 um disc variability. We place HD 166191 in context with discs at different evolutionary stages, showing that it is a potentially important object for understanding the protoplanetary to debris disc transition.Comment: accepted to MNRAS, fixed typos in abstract and axis labe

    HD 145263: Spectral Observations of Silica Debris Disk Formation via Extreme Space Weathering?

    Full text link
    We report here time domain infrared spectroscopy and optical photometry of the HD145263 silica-rich circumstellar disk system taken from 2003 through 2014. We find an F4V host star surrounded by a stable, massive 1e22 - 1e23 kg (M_Moon to M_Mars) dust disk. No disk gas was detected, and the primary star was seen rotating with a rapid ~1.75 day period. After resolving a problem with previously reported observations, we find the silica, Mg-olivine, and Fe-pyroxene mineralogy of the dust disk to be stable throughout, and very unusual compared to the ferromagnesian silicates typically found in primordial and debris disks. By comparison with mid-infrared spectral features of primitive solar system dust, we explore the possibility that HD 145263's circumstellar dust mineralogy occurred with preferential destruction of Fe-bearing olivines, metal sulfides, and water ice in an initially comet-like mineral mix and their replacement by Fe-bearing pyroxenes, amorphous pyroxene, and silica. We reject models based on vaporizing optical stellar megaflares, aqueous alteration, or giant hypervelocity impacts as unable to produce the observed mineralogy. Scenarios involving unusually high Si abundances are at odds with the normal stellar absorption near-infrared feature strengths for Mg, Fe, and Si. Models involving intense space weathering of a thin surface patina via moderate (T < 1300 K) heating and energetic ion sputtering due to a stellar superflare from the F4V primary are consistent with the observations. The space weathered patina should be reddened, contain copious amounts of nanophase Fe, and should be transient on timescales of decades unless replenished.Comment: 41 Pages, 5 Figures, 5 Tables, Accepted for publication in the Astrophysical Journa

    First beam test of Laser Engineered Surface Structures (LESS) at cryogenic temperature in CERN SPS accelerator

    Get PDF
    Electron cloud mitigation is an essential requirement for accelerators of positive particles with high intensity beams to guarantee beam stability and limited heat load in cryogenic systems. Laser Engineered Surface Structures (LESS) are being considered, within the High Luminosity upgrade of the LHC collider at CERN (HL-LHC), as an option to reduce the Secondary Electron Yield (SEY) of the surfaces facing the beam, thus suppressing the elec-tron cloud phenomenon. As part of this study, a 2.2 m long Beam Screen (BS) with LESS has been tested at cryogenic temperature in the COLD bore EXperiment (COLDEX) facility in the SPS accelerator at CERN. In this paper, we describe the manufacturing procedure of the beam screen, the employed laser treatment technique and discuss our first observations in COLDEX confirming electron cloud suppression.Electron cloud mitigation is an essential requirement for accelerators of positive particles with high intensity beams to guarantee beam stability and limited heat load in cryogenic systems. Laser Engineered Surface Structures (LESS) are being considered, within the High Luminosity upgrade of the LHC collider at CERN (HL-LHC), as an option to reduce the Secondary Electron Yield (SEY) of the surfaces facing the beam, thus suppressing the electron cloud phenomenon. As part of this study, a 2.2 m long Beam Screen (BS) with LESS has been tested at cryogenic temperature in the COLD bore EXperiment (COLDEX) facility in the SPS accelerator at CERN. In this paper, we describe the manufacturing procedure of the beam screen, the employed laser treatment technique and discuss our first observations in COLDEX confirming electron cloud suppression

    The continued optical to mid-IR evolution of V838 Monocerotis

    Get PDF
    The eruptive variable V838 Monocerotis gained notoriety in 2002 when it brightened nine magnitudes in a series of three outbursts and then rapidly evolved into an extremely cool supergiant. We present optical, near-IR, and mid-IR spectroscopic and photometric observations of V838 Monocerotis obtained between 2008 and 2012 at the Apache Point Observatory 3.5m, NASA IRTF 3m, and Gemini South 8m telescopes. We contemporaneously analyze the optical & IR spectroscopic properties of V838 Monocerotis to arrive at a revised spectral type L3 supergiant and effective temperature Teff~2000--2200 K. Because there are no existing optical observational data for L supergiants in the optical, we speculate that V838 Monocerotis may represent the prototype for L supergiants in this wavelength regime. We find a low level of Halpha emission present in the system, consistent with interaction between V838 Monocerotis and its B3V binary; however, we cannot rule out a stellar collision as the genesis event, which could result in the observed Halpha activity. Based upon a two-component blackbody fit to all wavelengths of our data, we conclude that, as of 2009, a shell of ejecta surrounded V838 Monocerotis at a radius of R=263+/-10 AU with a temperature of T=285+/-2 K. This result is consistent with IR interferometric observations from the same era and predictions from the Lynch et al. model of the expanding system, which provides a simple framework for understanding this complicated system.Comment: 6 pages, 2 tables, 6 figures; accepted to A
    corecore