221 research outputs found

    Loschmidt echo for a chaotic oscillator

    Full text link
    Chaotic dynamics of a nonlinear oscillator is considered in the semiclassical approximation. The Loschmidt echo is calculated for a time scale which is of the power law in semiclassical parameter. It is shown that an exponential decay of the Loschmidt echo is due to a Lyapunov exponent and it has a pure classical nature.Comment: Submit to PR

    Thermodynamic properties in the normal and superconducting states of Na(x)CoO(2)*yH(2)O powder measured by heat capacity experiments

    Full text link
    The heat capacity of superconducting Na(x)CoO(2)*yH(2)O was measured and the data are discussed based on three different models: The thermodynamic Ginzburg-Landau model, the BCS theory, and a model including the effects of line nodes in the superconducting gap function. The electronic heat capacity is separated from the lattice contribution in a thermodynamically consistent way maintaining the entropy balance of superconducting and normal states at the critical temperature. It is shown that for a fully gapped superconductor the data can only be explained by a reduced (about 55 %) superconducting volume fraction. The data are compatible with 100 % superconductivity in the case where line nodes are present in the superconducting gap function.Comment: Revised, 19 pages, 3 figure

    Shape-induced magnetic anisotropy in dilute magnetic alloys

    Full text link
    We extend the theory of the surface-induced magnetic anisotropy to mesoscopic samples with arbitrary geometry. The shape-induced anisotropy of impurity spins in small brick-shaped grains of dilute magnetic alloys is studied in detail. The surface-induced blocking of a magnetic-impurity spin is shown to be very sensitive to geometric parameters of a grain. This implies that the apparent discrepancy between the experimental data of different groups on the size dependence of the Kondo resistivity can result from different microstructure of the used samples. In order to interpret recent experimental data on the anomalous Hall effect in thin polycrystalline Fe doped Au films, we analyse the magnetisation of impurity spins as a function of the impurity position and of the grain shape.Comment: 10 pages, 6 figures, E-mail addresses: [email protected], [email protected], [email protected]

    Effect of hyperon bulk viscosity on neutron-star r-modes

    Full text link
    Neutron stars are expected to contain a significant number of hyperons in addition to protons and neutrons in the highest density portions of their cores. Following the work of Jones, we calculate the coefficient of bulk viscosity due to nonleptonic weak interactions involving hyperons in neutron-star cores, including new relativistic and superfluid effects. We evaluate the influence of this new bulk viscosity on the gravitational radiation driven instability in the r-modes. We find that the instability is completely suppressed in stars with cores cooler than a few times 10^9 K, but that stars rotating more rapidly than 10-30% of maximum are unstable for temperatures around 10^10 K. Since neutron-star cores are expected to cool to a few times 10^9 K within seconds (much shorter than the r-mode instability growth time) due to direct Urca processes, we conclude that the gravitational radiation instability will be suppressed in young neutron stars before it can significantly change the angular momentum of the star.Comment: final PRD version, minor typos etc correcte

    Gor'kov and Eliashberg Linear Response Theory: Rigorous Derivation and Limits of Applicability

    Full text link
    A rigorous microscopic calculation of the polarizability of disordered mesoscopic particles within the grand canonical ensemble is given in terms of the supersymmetry method. The phenomenological result of Gor'kov and Eliashberg is confirmed. Thus the underlying assumptions of their method are justified. This encourages application of RMT in the Gor'kov--Eliashberg style to more complicated situations.Comment: Final published versio

    Fixed-N Superconductivity: The Crossover from the Bulk to the Few-Electron Limit

    Full text link
    We present a truly canonical theory of superconductivity in ultrasmall metallic grains by variationally optimizing fixed-N projected BCS wave-functions, which yields the first full description of the entire crossover from the bulk BCS regime (mean level spacing dd \ll bulk gap Δ~\tilde\Delta) to the ``fluctuation-dominated'' few-electron regime (dΔ~d\gg\tilde\Delta). A wave-function analysis shows in detail how the BCS limit is recovered for dΔ~d\ll \tilde \Delta, and how for dΔ~d \gg \tilde \Delta pairing correlations become delocalized in energy space. An earlier grand-canonical prediction for an observable parity effect in the spectral gaps is found to survive the fixed-N projection.Comment: 4 pages, 3 figures, RevTeX, V2: minor charges to mach final printed versio

    Strong Electron-Phonon Coupling in Superconducting MgB2_2: A Specific Heat Study

    Full text link
    We report on measurements of the specific heat of the recently discovered superconductor MgB2_2 in the temperature range between 3 and 220 K. Based on a modified Debye-Einstein model, we have achieved a rather accurate account of the lattice contribution to the specific heat, which allows us to separate the electronic contribution from the total measured specific heat. From our result for the electronic specific heat, we estimate the electron-phonon coupling constant λ\lambda to be of the order of 2, significantly enhanced compared to common weak-coupling values 0.4\leq 0.4. Our data also indicate that the electronic specific heat in the superconducting state of MgB2_2 can be accounted for by a conventional, s-wave type BCS-model.Comment: 4 pages, 4 figure

    Parity-Affected Superconductivity in Ultrasmall Metallic Grains

    Full text link
    We investigate the breakdown of BCS superconductivity in {\em ultra}\/small metallic grains as a function of particle size (characterized by the mean spacing dd between discrete electronic eigenstates), and the parity (PP = even/odd) of the number of electrons on the island. Assuming equally spaced levels, we solve the parity-dependent BCS gap equation for the order parameter ΔP(d,T)\Delta_P (d,T). Both the T=0T=0 critical level spacing dc,Pd_{c,P} and the critical temperature Tc,P(d)T_{c,P} (d) at which ΔP=0\Delta_P = 0 are parity dependent, and both are so much smaller in the odd than the even case that these differences should be measurable in current experiments.Comment: 4 pages RevTeX, 1 encapsulated postscript figure, submitted to Physical Review Letter

    A small superconducting grain in the canonical ensemble

    Full text link
    By means of the Lanczos method we analyze superconducting correlations in ultrasmall grains at fixed particle number. We compute the ground state properties and the excitation gap of the pairing Hamiltonian as a function of the level spacing δ\delta. Both quantities turn out to be parity dependent and universal functions of the ratio δ/Δ\delta/\Delta (Δ\Delta is the BCS gap). We then characterize superconductivity in the canonical ensemble from the scaling behavior of correlation functions in energy space.Comment: 11 pages Revtex, 5 figures .ep
    corecore