8 research outputs found

    Inducible and constitutive promoters for genetic systems in Sulfolobus acidocaldarius

    Get PDF
    Central to genetic work in any organism are the availability of a range of inducible and constitutive promoters. In this work we studied several promoters for use in the hyperthermophilic archaeon Sulfolobus acidocaldarius. The promoters were tested with the aid of an E. coli–Sulfolobus shuttle vector in reporter gene experiments. As the most suitable inducible promoter a maltose inducible promoter was identified. It comprises 266 bp of the sequence upstream of the gene coding for the maltose/maltotriose binding protein (mbp, Saci_1165). Induction is feasible with either maltose or dextrin at concentrations of 0.2–0.4%. The highest increase in expression (up to 17-fold) was observed in late exponential and stationary phase around 30–50 h after addition of dextrin. Whereas in the presence of glucose and xylose higher basal activity and reduced inducibility with maltose is observed, sucrose can be used in the growth medium additionally without affecting the basal activity or the inducibility. The minimal promoter region necessary could be narrowed down to 169 bp of the upstream sequence. The ABCE1 protein from S. solfataricus was successfully expressed under control of the inducible promoter with the shuttle vector pC and purified from the S. acidocaldarius culture with a yield of about 1 mg L−1 culture. In addition we also determined the promoter strength of several constitutive promoters

    Weaving an enhanced sense of self and a collective sense of self through creative textile‐making

    No full text
    Historically, the occupation of textile‐making has fulfilled basic human needs. It also offers a means of expressing cultural and personal identity and developing self‐awareness. Drawing on an ethnography of a British guild of weavers, spinners and dyers, this paper explores how a sense of self is enhanced by becoming and being a textile‐maker through creative doing, and a collective sense of self develops from belonging to a guild. The findings indicate that a sense of self comes from an intrinsic need to make textiles that is closely connected to one's personal background, affinity for materials, skill mastery, passion for rhythm and process, spiritual commitment and continuity with the past. A collective sense of self is related to sharing occupation and working together as a part of a group. This brings about a sense of belonging, which in turn enhances quality of life and perceptions of well‐being

    Impact of copper oxide nanomaterials on differentiated and undifferentiated Caco-2 intestinal epithelial cells; assessment of cytotoxicity, barrier integrity, cytokine production and nanomaterial penetration

    No full text
    Background: Copper oxide nanomaterials (CuO NMs) are exploited in a diverse array of products including antimicrobials, inks, cosmetics, textiles and food contact materials. There is therefore a need to assess the toxicity of CuO NMs to the gastrointestinal (GI) tract since exposure could occur via direct oral ingestion, mucocillary clearance (following inhalation) or hand to mouth contact.Methods: Undifferentiated Caco-2 intestinal cells were exposed to CuO NMs (10 nm) at concentrations ranging from 0.37 to 78.13 μg/cm2 Cu (equivalent to 1.95 to 250 μg/ml) and cell viability assessed 24 h post exposure using the alamar blue assay. The benchmark dose (BMD 20), determined using PROAST software, was identified as 4.44 μg/cm2 for CuO NMs, and 4.25 μg/cm2 for copper sulphate (CuSO4), which informed the selection of concentrations for further studies. The differentiation status of cells and the impact of CuO NMs and CuSO4 on the integrity of the differentiated Caco-2 cell monolayer were assessed by measurement of trans-epithelial electrical resistance (TEER), staining for Zonula occludens-1 (ZO-1) and imaging of cell morphology using scanning electron microscopy (SEM). The impact of CuO NMs and CuSO4 on the viability of differentiated cells was performed via assessment of cell number (DAPI staining), and visualisation of cell morphology (light microscopy). Interleukin-8 (IL-8) production by undifferentiated and differentiated Caco-2 cells following exposure to CuO NMs and CuSO4 was determined using an ELISA. The copper concentration in the cell lysate, apical and basolateral compartments were measured with Inductive Coupled Plasma Optical Emission Spectrometry (ICP-OES) and used to calculate the apparent permeability coefficient (Papp); a measure of barrier permeability to CuO NMs. For all experiments, CuSO4 was used as an ionic control.Results: CuO NMs and CuSO4 caused a concentration dependent decrease in cell viability in undifferentiated cells. CuO NMs and CuSO4 translocated across the differentiated Caco-2 cell monolayer. CuO NM mediated IL-8 production was over 2-fold higher in undifferentiated cells. A reduction in cell viability in differentiated cells was not responsible for the lower level of cytokine production observed. Both CuO NMs and CuSO4 decreased TEER values to a similar extent, and caused tight junction dysfunction (ZO-1 staining), suggesting that barrier integrity was disrupted.Conclusions: CuO NMs and CuSO4 stimulated IL-8 production by Caco-2 cells, decreased barrier integrity and thereby increased the Papp and translocation of Cu. There was no significant enhancement in potency of the CuO NMs compared to CuSO4. Differentiated Caco-2 cells were identified as a powerful model to assess the impacts of ingested NMs on the GI tract

    Truffle renaissance in Poland – history, present and prospects

    No full text
    corecore