1,234 research outputs found
Separating Gravitational Wave Signals from Instrument Artifacts
Central to the gravitational wave detection problem is the challenge of
separating features in the data produced by astrophysical sources from features
produced by the detector. Matched filtering provides an optimal solution for
Gaussian noise, but in practice, transient noise excursions or ``glitches''
complicate the analysis. Detector diagnostics and coincidence tests can be used
to veto many glitches which may otherwise be misinterpreted as gravitational
wave signals. The glitches that remain can lead to long tails in the matched
filter search statistics and drive up the detection threshold. Here we describe
a Bayesian approach that incorporates a more realistic model for the instrument
noise allowing for fluctuating noise levels that vary independently across
frequency bands, and deterministic ``glitch fitting'' using wavelets as
``glitch templates'', the number of which is determined by a trans-dimensional
Markov chain Monte Carlo algorithm. We demonstrate the method's effectiveness
on simulated data containing low amplitude gravitational wave signals from
inspiraling binary black hole systems, and simulated non-stationary and
non-Gaussian noise comprised of a Gaussian component with the standard
LIGO/Virgo spectrum, and injected glitches of various amplitude, prevalence,
and variety. Glitch fitting allows us to detect significantly weaker signals
than standard techniques.Comment: 21 pages, 18 figure
Enabling high confidence detections of gravitational-wave bursts
With the advanced LIGO and Virgo detectors taking observations the detection
of gravitational waves is expected within the next few years. Extracting
astrophysical information from gravitational wave detections is a well-posed
problem and thoroughly studied when detailed models for the waveforms are
available. However, one motivation for the field of gravitational wave
astronomy is the potential for new discoveries. Recognizing and characterizing
unanticipated signals requires data analysis techniques which do not depend on
theoretical predictions for the gravitational waveform. Past searches for
short-duration un-modeled gravitational wave signals have been hampered by
transient noise artifacts, or "glitches," in the detectors. In some cases, even
high signal-to-noise simulated astrophysical signals have proven difficult to
distinguish from glitches, so that essentially any plausible signal could be
detected with at most 2-3 level confidence. We have put forth the
BayesWave algorithm to differentiate between generic gravitational wave
transients and glitches, and to provide robust waveform reconstruction and
characterization of the astrophysical signals. Here we study BayesWave's
capabilities for rejecting glitches while assigning high confidence to
detection candidates through analytic approximations to the Bayesian evidence.
Analytic results are tested with numerical experiments by adding simulated
gravitational wave transient signals to LIGO data collected between 2009 and
2010 and found to be in good agreement.Comment: 15 pages, 6 figures, submitted to PR
A Galactic Binary Detection Pipeline
The Galaxy is suspected to contain hundreds of millions of binary white dwarf systems, a large fraction of which will have sufficiently small orbital period to emit gravitational radiation in band for space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). LISA's main science goal is the detection of cosmological events (supermassive black hole mergers, etc.) however the gravitational signal from the galaxy will be the dominant contribution to the data - including instrumental noise over approximately two decades in frequency. The catalogue of detectable binary systems will serve as an unparalleled means of studying the Galaxy. Furthermore, to maximize the scientific return from the mission, the data must be "cleansed" of the galactic foreground. We will present an algorithm that can accurately resolve and subtract 2:: 10000 of these sources from simulated data supplied by the Mock LISA Data Challenge Task Force. Using the time evolution of the gravitational wave frequency, we will reconstruct the position of the recovered binaries and show how LISA will sample the entire compact binary population in the Galaxy
Gravitational Wave Sources as Timing References for LISA Data
In the megahertz gravitational-wave band, galactic ultra-compact binaries (UCBs) are continuous sources emitting at near-constant frequency. The signals from many of these galactic binaries will be sufficiently strong to be detectable by the Laser Interferometer Space Antenna (LISA) after approximately Omicron (1 week) of observing. In addition to their astrophysical value, these UCBs can be used to monitor the data quality of the observatory. This paper demonstrates the capabilities of galactic UCBs to be used as calibration sources for LISA by demanding signal coherence between adjacent week-long data segments separated by a gap in time of a priori unknown duration. A parameter for the gap duration is added to the UCB waveform model and used in a Markov-chain Monte Carlo algorithm simultaneously fitting for the astrophysical source parameters. Results from measurements of several UCBs are combined to produce a joint posterior on the gap duration. The measurement accuracy's dependence on how much is known about the UCBs through prior observing, and seasonal variations due to the LISA orbital motion, is quantified. The duration of data gaps in a two-week segment of data can be constrained to within approximately 0.2 s using Omicron (10) UCBs after one month of observing. The timing accuracy from UCBs improves to approximately or less than o.1 s after 1 year of mission operations. These results are robust to within a factor of approximately 2 when taking into account seasonal variations
Prospects for observing ultra-compact binaries with space-based gravitational wave interferometers and optical telescopes
Space-based gravitational wave interferometers are sensitive to the galactic
population of ultra-compact binaries. An important subset of the ultra-compact
binary population are those stars that can be individually resolved by both
gravitational wave interferometers and electromagnetic telescopes. The aim of
this paper is to quantify the multi-messenger potential of space-based
interferometers with arm-lengths between 1 and 5 Gm. The Fisher Information
Matrix is used to estimate the number of binaries from a model of the Milky Way
which are localized on the sky by the gravitational wave detector to within 1
and 10 square degrees and bright enough to be detected by a magnitude limited
survey. We find, depending on the choice of GW detector characteristics,
limiting magnitude, and observing strategy, that up to several hundred
gravitational wave sources could be detected in electromagnetic follow-up
observations.Comment: 6 pages, 3 figures Updated to include new results. Submitted to MNRA
- …