1,900 research outputs found
On continuum modeling of sputter erosion under normal incidence: interplay between nonlocality and nonlinearity
Under specific experimental circumstances, sputter erosion on semiconductor
materials exhibits highly ordered hexagonal dot-like nanostructures. In a
recent attempt to theoretically understand this pattern forming process, Facsko
et al. [Phys. Rev. B 69, 153412 (2004)] suggested a nonlocal, damped
Kuramoto-Sivashinsky equation as a potential candidate for an adequate
continuum model of this self-organizing process. In this study we theoretically
investigate this proposal by (i) formally deriving such a nonlocal equation as
minimal model from balance considerations, (ii) showing that it can be exactly
mapped to a local, damped Kuramoto-Sivashinsky equation, and (iii) inspecting
the consequences of the resulting non-stationary erosion dynamics.Comment: 7 pages, 2 Postscript figures, accepted by Phys. Rev. B corrected
typos, few minor change
Mid - infrared interferometry of massive young stellar objects II Evidence for a circumstellar disk surrounding the Kleinmann - Wright object
The formation scenario for massive stars is still under discussion. To
further constrain current theories, it is vital to spatially resolve the
structures from which material accretes onto massive young stellar objects
(MYSOs). Due to the small angular extent of MYSOs, one needs to overcome the
limitations of conventional thermal infrared imaging, regarding spatial
resolution, in order to get observational access to the inner structure of
these objects.We employed mid - infrared interferometry, using the MIDI
instrument on the ESO /VLTI, to investigate the Kleinmann - Wright Object, a
massive young stellar object previously identified as a Herbig Be star
precursor. Dispersed visibility curves in the N- band (8 - 13 {\mu}m) have been
obtained at 5 interferometric baselines. We show that the mid - infrared
emission region is resolved. A qualitative analysis of the data indicates a non
- rotationally symmetric structure, e.g. the projection of an inclined disk. We
employed extensive radiative transfer simulations based on spectral energy
distribution fitting. Since SED - only fitting usually yields degenerate
results, we first employed a statistical analysis of the parameters provided by
the radiative transfer models. In addition, we compared the ten best - fitting
self - consistent models to the interferometric observations. Our analysis of
the Kleinmann - Wright Object suggests the existence of a circumstellar disk of
0.1M\odot at an intermediate inclination of 76\circ, while an additional dusty
envelope is not necessary for fitting the data. Furthermore, we demonstrate
that the combination of IR interferometry with radiative transfer simulations
has the potential to resolve ambiguities arising from the analysis of spectral
energy distributions alone.Comment: 12 pages, 22 figures accepted for publication in A&
A Newly Discovered Bordetella Species Carries a Transcriptionally Active CRISPR-Cas with a Small Cas9 Endonuclease
Background Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) are widely distributed among bacteria. These systems provide adaptive immunity against mobile genetic elements specified by the spacer sequences stored within the CRISPR. Methods The CRISPR-Cas system has been identified using Basic Local Alignment Search Tool (BLAST) against other sequenced and annotated genomes and confirmed via CRISPRfinder program. Using Polymerase Chain Reactions (PCR) and Sanger DNA sequencing, we discovered CRISPRs in additional bacterial isolates of the same species of Bordetella. Transcriptional activity and processing of the CRISPR have been assessed via RT-PCR. Results Here we describe a novel Type II-C CRISPR and its associated genes—cas1, cas2, and cas9—in several isolates of a newly discovered Bordetella species. The CRISPR-cas locus, which is absent in all other Bordetella species, has a significantly lower GC-content than the genome-wide average, suggesting acquisition of this locus via horizontal gene transfer from a currently unknown source. The CRISPR array is transcribed and processed into mature CRISPR RNAs (crRNA), some of which have homology to prophages found in closely related species B. hinzii. Conclusions Expression of the CRISPR-Cas system and processing of crRNAs with perfect homology to prophages present in closely related species, but absent in that containing this CRISPR-Cas system, suggest it provides protection against phage predation. The 3,117-bp cas9 endonuclease gene from this novel CRISPR-Cas system is 990 bp smaller than that of Streptococcus pyogenes, the 4,017-bp allele currently used for genome editing, and which may make it a useful tool in various CRISPR-Cas technologies
Infrared variability, maser activity, and accretion of massive young stellar objects
Methanol and water masers indicate young stellar objects. They often exhibit
flares, and a fraction shows periodic activity. Several mechanisms might
explain this behavior but the lack of concurrent infrared (IR) data complicates
to identify the cause. Recently, 6.7 GHz methanol maser flares were observed,
triggered by accretion bursts of high-mass YSOs which confirmed the IR-pumping
of these masers. This suggests that regular IR changes might lead to maser
periodicity. Hence, we scrutinized space-based IR imaging of YSOs associated
with periodic methanol masers. We succeeded to extract the IR light curve from
NEOWISE data for the intermediate mass YSO G107.298+5.639. Thus, for the first
time a relationship between the maser and IR variability could be established.
While the IR light curve shows the same period of ~34.6 days as the masers, its
shape is distinct from that of the maser flares. Possible reasons for the IR
periodicity are discussed.Comment: 4 pages, 3 figures, to be published in: Proceedings IAU Symposium 336
"Astrophysical Masers: Unlocking the Mysteries of the Universe", Editors: A.
Tarchi, M.J. Reid & P. Castangia, updated version with hyperlinks adde
Антропоекосистема та духовні цінності – чи вдасться перетнути барьер сучасної кризи та чим небезпечна концепція лімітування (до питання транскрипції та перекладів наукових понять на кшталт "сталий розвиток")
Dissecting Massive YSOs with Mid-Infrared Interferometry
The very inner structure of massive YSOs is difficult to trace. With
conventional observational methods we often identify structures still several
hundreds of AU in size. But we also need information about the innermost
regions where the actual mass transfer onto the forming high-mass star occurs.
An innovative way to probe these scales is to utilise mid-infrared
interferometry. Here, we present first results of our MIDI GTO programme at the
VLTI. We observed 10 well-known massive YSOs down to scales of 20 mas. We
clearly resolve these objects which results in low visibilities and sizes in
the order of 30 - 50 mas. Thus, with MIDI we can for the first time quantify
the extent of the thermal emission from the warm circumstellar dust and thus
calibrate existing concepts regarding the compactness of such emission in the
pre-UCHII region phase. Special emphasis will be given to the BN-type object
M8E-IR where our modelling is most advanced and where there is indirect
evidence for a strongly bloated central star.Comment: 8 pages, 6 figures, proceedings contribution for the conference
"Massive Star Formation: Observations confront Theory", held in September
2007 in Heidelberg, Germany; to appear in ASP Conf. Ser. 387, H. Beuther et
al. (eds.
Mid-infrared interferometry of massive young stellar objects. I. VLTI and Subaru observations of the enigmatic object M8E-IR
[abridged] Our knowledge of the inner structure of embedded massive young
stellar objects is still quite limited. We attempt here to overcome the spatial
resolution limitations of conventional thermal infrared imaging. We employed
mid-infrared interferometry using the MIDI instrument on the ESO/VLTI facility
to investigate M8E-IR, a well-known massive young stellar object suspected of
containing a circumstellar disk. Spectrally dispersed visibilities in the 8-13
micron range were obtained at seven interferometric baselines. We resolve the
mid-infrared emission of M8E-IR and find typical sizes of the emission regions
of the order of 30 milli-arcseconds (~45 AU). Radiative transfer simulations
have been performed to interpret the data. The fitting of the spectral energy
distribution, in combination with the measured visibilities, does not provide
evidence for an extended circumstellar disk with sizes > 100 AU but requires
the presence of an extended envelope. The data are not able to constrain the
presence of a small-scale disk in addition to an envelope. In either case, the
interferometry measurements indicate the existence of a strongly bloated,
relatively cool central object, possibly tracing the recent accretion history
of M8E-IR. In addition, we present 24.5 micron images that clearly distinguish
between M8E-IR and the neighbouring ultracompact HII region and which show the
cometary-shaped infrared morphology of the latter source. Our results show that
IR interferometry, combined with radiative transfer modelling, can be a viable
tool to reveal crucial structure information on embedded massive young stellar
objects and to resolve ambiguities arising from fitting the SED.Comment: 7 pages, 5 figures, accepted for publication in A&A, new version
after language editing, one important reference added, conclusions unchange
The VLTI/MIDI survey of massive young stellar objects - Sounding the inner regions around intermediate- and high-mass young stars using mid-infrared interferometry
We aim to characterize the distribution and composition of circumstellar
material around young massive stars, and to investigate exactly which physical
structures in these objects are probed by long-baseline mid-infrared
interferometric observations. We used the two-telescope interferometric
instrument MIDI of the Very Large Telescope Interferometer of the European
Southern Observatory to observe a sample of 24 intermediate- and high-mass
young stellar objects in the N band (8-13 micron). We had successful fringe
detections for 20 objects, and present spectrally-resolved correlated fluxes
and visibility levels for projected baselines of up to 128 m. We fit the
visibilities with geometric models to derive the sizes of the emitting regions,
as well as the orientation and elongation of the circumstellar material.
Fourteen objects in the sample show the 10 micron silicate feature in
absorption in the total and correlated flux spectra. For 13 of these objects,
we were able to fit the correlated flux spectra with a simple absorption model,
allowing us to constrain the composition and absorptive properties of the
circumstellar material. Nearly all of the massive young stellar objects
observed show significant deviations from spherical symmetry at mid-infrared
wavelengths. In general, the mid-infrared emission can trace both disks and
outflows, and in many cases it may be difficult to disentangle these components
on the basis of interferometric data alone, because of the sparse spatial
frequency coverage normally provided by current long-baseline interferometers.
For the majority of the objects in this sample, the absorption occurs on
spatial scales larger than those probed by MIDI. Finally, the physical extent
of the mid-infrared emission around these sources is correlated with the total
luminosity, albeit with significant scatter.Comment: 36 pages, 22 figures. Accepted to Astronomy and Astrophysic
High-Resolution Infrared Imaging of Herschel 36 SE: A Showcase for the Influence of Massive Stars in Cluster Environments
We present high-resolution infrared imaging of the massive star-forming region around the O-star Herschel 36. Special emphasis is given to a compact infrared source at 0".25 southeast of the star. The infrared source, hereafter Her 36 SE, is extended in the broad-band images, but features spatially unresolved Br gamma line emission. The line-emission source coincides in position with the previous HST detections in H alpha and the 2 cm radio continuum emission detected by VLA interferometry. We propose that the infrared source Her 36 SE harbors an early B-type star, deeply embedded in a dusty cloud. The fan shape of the cloud with Herschel 36 at its apex, though, manifests direct and ongoing destructive influence of the O7V star on Her 36 SE
- …
