87 research outputs found

    Multiscale Simulations Suggest a Mechanism for the Association of the Dok7 PH Domain with PIP-Containing Membranes

    Get PDF
    Dok7 is a peripheral membrane protein that is associated with the MuSK receptor tyrosine kinase. Formation of the Dok7/MuSK/membrane complex is required for the activation of MuSK. This is a key step in the complex exchange of signals between neuron and muscle, which lead to neuromuscular junction formation, dysfunction of which is associated with congenital myasthenic syndromes. The Dok7 structure consists of a Pleckstrin Homology (PH) domain and a Phosphotyrosine Binding (PTB) domain. The mechanism of the Dok7 association with the membrane remains largely unknown. Using multi-scale molecular dynamics simulations we have explored the formation of the Dok7 PH/membrane complex. Our simulations indicate that the PH domain of Dok7 associates with membranes containing phosphatidylinositol phosphates (PIPs) via interactions of the β1/β2, β3/β4, and β5/β6 loops, which together form a positively charged surface on the PH domain and interact with the negatively charged headgroups of PIP molecules. The initial encounter of the Dok7 PH domain is followed by formation of additional interactions with the lipid bilayer, and especially with PIP molecules, which stabilizes the Dok7 PH/membrane complex. We have quantified the binding of the PH domain to the model bilayers by calculating a density landscape for protein/membrane interactions. Detailed analysis of the PH/PIP interactions reveal both a canonical and an atypical site to be occupied by the anionic lipid. PH domain binding leads to local clustering of PIP molecules in the bilayer. Association of the Dok7 PH domain with PIP lipids is therefore seen as a key step in localization of Dok7 to the membrane and formation of a complex with MuSK

    Membrane Docking Geometry of GRP1 PH Domain Bound to a Target Lipid Bilayer: An EPR Site-Directed Spin-Labeling and Relaxation Study

    Get PDF
    The second messenger lipid PIP3 (phosphatidylinositol-3,4,5-trisphosphate) is generated by the lipid kinase PI3K (phosphoinositide-3-kinase) in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP3-specific pleckstrin homology (PH) domains to the membrane surface. Despite the broad importance of PIP3-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP3 lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP3. The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i) PIP3 target lipid that provides specificity and affinity, and (ii) PS facilitator lipid that enhances the PIP3 on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP3 headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP3 headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP3 headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral diffusion observed for PIP3-bound GRP1 PH domain on supported lipid bilayers

    Insulin signalling and the regulation of glucose and lipid metabolism

    Full text link
    The epidemic of type 2 diabetes and impaired glucose tolerance is one of the main causes of morbidity and mortality worldwide. In both disorders, tissues such as muscle, fat and liver become less responsive or resistant to insulin. This state is also linked to other common health problems, such as obesity, polycystic ovarian disease, hyperlipidaemia, hypertension and atherosclerosis. The pathophysiology of insulin resistance involves a complex network of signalling pathways, activated by the insulin receptor, which regulates intermediary metabolism and its organization in cells. But recent studies have shown that numerous other hormones and signalling events attenuate insulin action, and are important in type 2 diabetes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62568/1/414799a.pd

    On the controlling factors for the variability of carbon dioxide flux in a heterogeneous urban environment

    No full text
    Local heterogeneity of CO2 sources and sinks is a key factor for the variability of carbon dioxide flux (FC) in urban areas. Information on the urban structure around a site, especially the related emission characteristics, is thus of great importance to the understanding of observed FC. Strong spatially confined sources like major roads inhibit a direct correlation of FC to area-averaged features of the urban structure and may lead to a heavily biased signal. Four years of FC measured at Basel Aeschenplatz, Switzerland, are analysed with respect to the controlling factors and the cause for variability on different time scales. The source area is segregated into equal sectors to address heterogeneous emission patterns. Residential areas to the east are bordered by business areas and major roads to the west, which leads to a fundamental dependence of FC on wind direction. Besides, its diurnal course is explainable with traffic emissions while its annual course follows heating-related combustion emissions. Vegetation fraction is rather considered to be an indicator for urban land use types (residential/business) and the attributable emission characteristics than to be a measure for biological sink effects. Inter-annual variability occurs as a result of anomalies in wind direction patterns or air temperature. Average yearly FC is 16.4 µmol m–2s–1 with slight variations (±0.55 µmol m–2s–1) over the 4 years. It likely originates from an average of 70% traffic and 30% heating-related emissions with significant sectoral differences. As a continuous measure for the emissions of each sector, the expected CO2 flux (eFC) per sector is introduced, leading to an enhanced comparability. Relating sectoral eFC instead of FC to urban surface fractions of buildings and vegetation results in a better agreement (also with data from other studies)

    Structure-based multiple alignment of extracellular pectate lyase sequences

    No full text
    International audienc
    • …
    corecore