15,598 research outputs found

    Quantum Gravity at the Planck Length

    Get PDF
    I describe our understanding of physics near the Planck length, in particular the great progress in the last four years in string theory. These are lectures presented at the 1998 SLAC Summer Institute.Comment: 33 pages, LaTeX, 11 epsf figure

    Kinetic Antiferromagnetism in the Triangular Lattice

    Get PDF
    We show that the motion of a single hole in the infinite UU Hubbard model with frustrated hopping leads to weak metallic antiferromagnetism of kinetic origin. An intimate relationship is demonstrated between the simplest versions of this problem in 1 and 2 dimensions, and two of the most subtle many body problems, namely the Heisenberg Bethe ring in 1-d and the 2-dimensional triangular lattice Heisenberg antiferromagnet.Comment: 10 pages, 2 figures, 5 supplementary figures; Figures fixe

    Exact Static Cylindrical Solution to Conformal Weyl Gravity

    Get PDF
    We present the exact exterior solution for a static and neutral cylindrically symmetric source in locally conformal invariant Weyl gravity. As a special case the general relativity analogue still can be attained, however only as a sub-family of solutions. Our solution contains a linear term that would thus result in a potential that grows linearly over large distances. This may have implications for exotic astrophysical structures as well as matter fields on the extremely small scale.Comment: 8 pages, Physical Review

    Photoassociation dynamics in a Bose-Einstein condensate

    Full text link
    A dynamical many body theory of single color photoassociation in a Bose-Einstein condensate is presented. The theory describes the time evolution of a condensed atomic ensemble under the influence of an arbitrarily varying near resonant laser pulse, which strongly modifies the binary scattering properties. In particular, when considering situations with rapid variations and high light intensities the approach described in this article leads, in a consistent way, beyond standard mean field techniques. This allows to address the question of limits to the photoassociation rate due to many body effects which has caused extensive discussions in the recent past. Both, the possible loss rate of condensate atoms and the amount of stable ground state molecules achievable within a certain time are found to be stronger limited than according to mean field theory. By systematically treating the dynamics of the connected Green's function for pair correlations the resonantly driven population of the excited molecular state as well as scattering into the continuum of non-condensed atomic states are taken into account. A detailed analysis of the low energy stationary scattering properties of two atoms modified by the near resonant photoassociation laser, in particular of the dressed state spectrum of the relative motion prepares for the analysis of the many body dynamics. The consequences of the finite lifetime of the resonantly coupled bound state are discussed in the two body as well as in the many body context. Extending the two body description to scattering in a tight trap reveals the modifications to the near resonant adiabatic dressed levels caused by the decay of the excited molecular state.Comment: 27 pages revtex, 16 figure

    Accelerated black holes in an anti-de Sitter universe

    Full text link
    The C-metric is one of few known exact solutions of Einstein's field equations which describes the gravitational field of moving sources. For a vanishing or positive cosmological constant, the C-metric represents two accelerated black holes in asymptotically flat or de Sitter spacetime. For a negative cosmological constant the structure of the spacetime is more complicated. Depending on the value of the acceleration, it can represent one black hole or a sequence of pairs of accelerated black holes in the spacetime with an anti-de Sitter-like infinity. The global structure of this spacetime is analyzed and compared with an empty anti-de Sitter universe. It is illustrated by 3D conformal-like diagrams.Comment: 14 pages, 17 figures [see http://utf.mff.cuni.cz/~krtous/physics/CADS/ for the version with the high quality figures and for related animations and interactive 3D diagrams

    Multiple-scale analysis of discrete nonlinear partial difference equations: the reduction of the lattice potential KdV

    Full text link
    We consider multiple lattices and functions defined on them. We introduce slow varying conditions for functions defined on the lattice and express the variation of a function in terms of an asymptotic expansion with respect to the slow varying lattices. We use these results to perform the multiple--scale reduction of the lattice potential Korteweg--de Vries equation.Comment: 17 pages. 1 figur

    Pure quantum freezing of the 5th^{th} dimension

    Full text link
    It is shown that superthin and superlong gravitational flux tube solutions in the 5D Kaluza-Klein gravity have the region (lPl)(\approx l_{Pl}) where the metric signature changes from {+,,,,}\{+,-,-,-,- \} to {,,,,+}\{-,-,-,-,+ \}. Such change is too quickly from one of the paradigms of quantum gravity which tells that the Planck length is the minimal length in the nature and consequently the physical quantities can not change very quickly in the course of this length. For avoiding such dynamic it is supposed that a pure quantum freezing of the dynamic of the 5th5^{th} dimension takes place. As the continuation of the flux tube metric in the longitudinal direction the Reissner-Nordstr\"om metric is proposed. In the consequence of such construction one can avoid the appearance of a point-like singularity in the extremal Reissner-Nordstr\"om solution.Comment: grammar errors are correcte

    The lattice Schwarzian KdV equation and its symmetries

    Full text link
    In this paper we present a set of results on the symmetries of the lattice Schwarzian Korteweg-de Vries (lSKdV) equation. We construct the Lie point symmetries and, using its associated spectral problem, an infinite sequence of generalized symmetries and master symmetries. We finally show that we can use master symmetries of the lSKdV equation to construct non-autonomous non-integrable generalized symmetries.Comment: 11 pages, no figures. Submitted to Jour. Phys. A, Special Issue SIDE VI

    Cylindrically Symmetric Vacuum Solutions in Higher Dimensional Brans-Dicke Theory

    Get PDF
    Higher dimensional, static, cylindrically symmetric vacuum solutions with and without a cosmological constant in the Brans-Dicke theory are presented. We show that, for a negative cosmological constant and for specific values of the parameters, a particular subclass of these solutions include higher dimensional topological black hole-type solutions with a flat horizon topology. We briefly extend our discussion to stationary vacuum and Λ\Lambda-vacuum solutions.Comment: V3: Published Versio
    corecore