405 research outputs found
Exposure in utero to maternal diabetes leads to glucose intolerance and high blood pressure with no major effects on lipid metabolism
AIM: Recent evidence shows that adult metabolic disease may originate from an adverse fetal environment that can alter organ development and function in postnatal life. This study aimed to analyze the effect of exposure in utero to maternal diabetes on the development of the metabolic syndrome in the offspring. METHODS: Pregnant rats were made diabetic (blood glucose was 20mM) with a single streptozotocin injection on day 0 of gestation. Offspring from diabetic mothers (DMO) and control mothers (CMO) were followed from birth to 12 months of age. In these animals, metabolic parameters, such as glucose tolerance, insulin sensitivity and plasma lipid levels, as well as pancreatic insulin and morphology were studied. RESULTS: Compared with controls, DMO offspring had normal birth weights, but impaired postnatal growth that persisted throughout life. Metabolic tests revealed that DMO offspring also showed impaired glucose tolerance at six months associated with decreased insulin sensitivity and low insulin secretion. In older animals (12 months old), this phenotype persisted, but to a lesser extent. The DMO offspring also presented with high blood pressure and decreased levels of fasting plasma triglycerides, but normal plasma NEFA, and HDL and total cholesterol. CONCLUSION: Altogether, these results show that our model of exposure in utero to maternal diabetes led to normal birth weights, and induced transient glucose intolerance and increased blood pressure with no major effects on lipid metabolism. It also suggests that a hyperglycaemic fetal environment may be able to \u27programme\u27 hypertension and glucose intolerance, but not alter lipid metabolism
A Chiral Paramagnetic Skyrmion-like Phase in MnSi
We present a comprehensive study of chiral fluctuations in the reference
helimagnet MnSi by polarized neutron scattering and Neutron Spin Echo
spectroscopy, which reveals the existence of a completely left-handed and
dynamically disordered phase. This phase may be identified as a spontaneous
skyrmion phase: it appears in a limited temperature range just above the
helical transition Tc and coexists with the helical phase at Tc.Comment: PRL accepte
About the origin of low wafer performance and crystal defect generation on seed-cast growth of industrial mono-like silicon ingots
The era of the seed-cast grown monocrystalline-based silicon ingots is coming. Mono-like, pseudomono or quasimono wafers are product labels that can be nowadays found in the market, as a critical innovation for the photovoltaic industry. They integrate some of the most favorable features of the conventional silicon substrates for solar cells, so far, such as the high solar cell efficiency offered by the monocrystalline Czochralski-Si (Cz-Si) wafers and the lower cost, high productivity and full square-shape that characterize the well-known multicrystalline casting growth method. Nevertheless, this innovative crystal growth approach still faces a number of mass scale problems that need to be resolved, in order to gain a deep, 100% reliable and worldwide market: (i) extended defects formation during the growth process; (ii) optimization of the seed recycling; and (iii) parts of the ingots giving low solar cells performance, which directly affect the production costs and yield of this approach. Therefore, this paper presents a series of casting crystal growth experiments and characterization studies from ingots, wafers and cells manufactured in an industrial approach, showing the main sources of crystal defect formation, impurity enrichment and potential consequences at solar cell level. The previously mentioned technological drawbacks are directly addressed, proposing industrial actions to pave the way of this new wafer technology to high efficiency solar cells
Evaluation of electrothermal vaporization for sample introduction aiming at Cu isotopic analysis via multicollector-inductively coupled plasma mass spectrometry
A new method for Cu isotopic analysis was developed using a commercially available electrothermal vaporization (ETV) device coupled to multicollector-inductively coupled plasma mass spectrometry (MC-ICP-MS). The method demonstrated potential for the isotopic analysis of microsamples (e.g., 5 mu L) in a biological context. For example, Cu isotopic analysis of NIST 3114 (diluted to 1 mg L-1 Cu) using self-bracketing provided average delta Cu-65 values of 0.00 +/- 0.17%0 (2SD, n = 10) and internal precision values of 712 ppm. In order to achieve this level of accuracy and precision, it is critical to properly deal with the short transient signals generated by the ETV-MC-ICP-MS, which implies using point by point calculations and time lag detector correction (TDC), as well as a criterion to reject potential outliers. The results of this technique were compared with the results obtained via femtosecond-laser ablation-MC-ICPMS using the same pre-treated serum samples. No significant differences were observed among the results obtained in both cases, while external precision was 0.26%0 for ETV-MC-ICP-MS and 0.24%0 for fs-LA-MC-ICP-MS, expressed as median value of 2SD (n = 27), further proving the usefulness of the approach proposed in this context, as the use of ETV results in a more straightforward approach
A study of general practitioners' perspectives on electronic medical records systems in NHS Scotland
<b>Background</b> Primary care doctors in NHSScotland have been using electronic medical records within their practices routinely for many years. The Scottish Health Executive eHealth strategy (2008-2011) has recently brought radical changes to the primary care computing landscape in Scotland: an information system (GPASS) which was provided free-of-charge by NHSScotland to a majority of GP practices has now been replaced by systems provided by two approved commercial providers. The transition to new electronic medical records had to be completed nationally across all health-boards by March 2012. <p></p><b>
Methods</b> We carried out 25 in-depth semi-structured interviews with primary care doctors to elucidate GPs' perspectives on their practice information systems and collect more general information on management processes in the patient surgical pathway in NHSScotland. We undertook a thematic analysis of interviewees' responses, using Normalisation Process Theory as the underpinning conceptual framework. <p></p>
<b>Results</b> The majority of GPs' interviewed considered that electronic medical records are an integral and essential element of their work during the consultation, playing a key role in facilitating integrated and continuity of care for patients and making clinical information more accessible. However, GPs expressed a number of reservations about various system functionalities - for example: in relation to usability, system navigation and information visualisation.
<b>Conclusion </b>Our study highlights that while electronic information systems are perceived as having important benefits, there remains substantial scope to improve GPs' interaction and overall satisfaction with these systems. Iterative user-centred improvements combined with additional training in the use of technology would promote an increased understanding, familiarity and command of the range of functionalities of electronic medical records among primary care doctors
New Chandra observations of the jet in 3C273. I. Softer X-ray than radio spectra and the X-ray emission mechanism
The jet in 3C273 is a high-power quasar jet with radio, optical and X-ray
emission whose size and brightness allow a detailed study of the emission
processes acting in it. We present deep Chandra observations of this jet and
analyse the spectral properties of the jet emission from radio through X-rays.
We find that the X-ray spectra are significantly softer than the radio spectra
in all regions of the bright part of the jet except for the first bright "knot
A", ruling out a model in which the X-ray emission from the entire jet arises
from beamed inverse-Compton scattering of cosmic microwave background photons
in a single-zone jet flow. Within two-zone jet models, we find that a
synchrotron origin for the jet's X-rays requires fewer additional assumptions
than an inverse-Compton model, especially if velocity shear leads to efficient
particle acceleration in jet flows.Comment: 11 pages, 5 figures, emulateapj. Accepted by Ap
NOV story: the way to CCN3
The principal aim of this historical review- the first in a new series- is to present the basic concepts that led to the discovery of NOV and to show how our ideas evolved regarding the role and functions of this new class of proteins. It should prove particularly useful to the new comers and to students who are engaged in this exciting field. It is also a good opportunity to acknowledge the input of those who participated in the development of this scientific endeavou
- …