240 research outputs found

    Transillumination imaging through scattering media by use of photorefractive polymers

    Get PDF
    We demonstrate the use of a near-infrared-sensitive photorefractive polymer with high efficiency for imaging through scattering media, using an all-optical holographic time gate. Imaging through nine scattering mean free paths is performed at 800 nm with a mode-locked continuous-wave Ti:sapphire laser

    Sonoluminescence and collapse dynamics of multielectron bubbles in helium

    Full text link
    Multielectron bubbles (MEBs) differ from gas-filled bubbles in that it is the Coulomb repulsion of a nanometer thin layer of electrons that forces the bubble open rather than the pressure of an enclosed gas. We analyze the implosion of MEBs subjected to a pressure step, and find that despite the difference in the underlying processes the collapse dynamics is similar to that of gas-filled bubbles. When the MEB collapses, the electrons inside it undergo strong accelerations, leading to the emission of radiation. This type of sonoluminescence does not involve heating and ionisation of any gas inside the bubble. We investigate the conditions necessary to obtain sonoluminescence from multielectron bubbles and calculate the power spectrum of the emitted radiation.Comment: 6 figure

    Stability of multi-electron bubbles in liquid helium

    Full text link
    The stability of multi-electron bubbles in liquid helium is investigated theoretically. We find that multi-electron bubbles are unstable against fission whenever the pressure is positive. It is shown that for moving bubbles the Bernoulli effect can result in a range of pressures over which the bubbles are stable.Comment: 7 pages, 5 figure

    The effect of pressure on statics, dynamics and stability of multielectron bubbles

    Full text link
    The effect of pressure and negative pressure on the modes of oscillation of a multi-electron bubble in liquid helium is calculated. Already at low pressures of the order of 10-100 mbar, these effects are found to significantly modify the frequencies of oscillation of the bubble. Stabilization of the bubble is shown to occur in the presence of a small negative pressure, which expands the bubble radius. Above a threshold negative pressure, the bubble is unstable.Comment: 4 pages, 2 figures, accepted for publication in Physical Review Letter

    Природа действия катализаторов на основе волокнистых ионитов в процессе дезоксигенации воды

    Get PDF
    Authors' ideas on the chemistry of water deoxygenation on fibrous catalysts containing palladium or iron hydroxides, are presented. The most plausible mechanisms for oxygen reduction on these catalysts are suggested.Изложены представления авторов о химизме процесса дезоксигенации воды на волокнистых катализаторах, содержащих в качестве активного компонента палладий или гидроксиды железа. Предложены наиболее вероятные схемы механизмов реакций каталитического гидрирования растворенного кислорода

    Theoretical study of the insulating oxides and nitrides: SiO2, GeO2, Al2O3, Si3N4, and Ge3N4

    Get PDF
    An extensive theoretical study is performed for wide bandgap crystalline oxides and nitrides, namely, SiO_{2}, GeO_{2}, Al_{2}O_{3}, Si_{3}N_{4}, and Ge_{3}N_{4}. Their important polymorphs are considered which are for SiO_{2}: α\alpha-quartz, α\alpha- and β\beta-cristobalite and stishovite, for GeO_{2}: α\alpha-quartz, and rutile, for Al_{2}O_{3}: α\alpha-phase, for Si_{3}N_{4} and Ge_{3}N_{4}: α\alpha- and β\beta-phases. This work constitutes a comprehensive account of both electronic structure and the elastic properties of these important insulating oxides and nitrides obtained with high accuracy based on density functional theory within the local density approximation. Two different norm-conserving \textit{ab initio} pseudopotentials have been tested which agree in all respects with the only exception arising for the elastic properties of rutile GeO_{2}. The agreement with experimental values, when available, are seen to be highly satisfactory. The uniformity and the well convergence of this approach enables an unbiased assessment of important physical parameters within each material and among different insulating oxide and nitrides. The computed static electric susceptibilities are observed to display a strong correlation with their mass densities. There is a marked discrepancy between the considered oxides and nitrides with the latter having sudden increase of density of states away from the respective band edges. This is expected to give rise to excessive carrier scattering which can practically preclude bulk impact ionization process in Si_{3}N_{4} and Ge_{3}N_{4}.Comment: Published version, 10 pages, 8 figure

    Flux-Induced Vortex in Mesoscopic Superconducting Loops

    Full text link
    We predict the existence of a quantum vortex for an unusual situation. We study the order parameter in doubly connected superconducting samples embedded in a uniform magnetic field. For samples with perfect cylindrical symmetry, the order parameter has been known for long and no vortices are present in the linear regime. However, if the sample is not symmetric, there exist ranges of the field for which the order parameter vanishes along a line, parallel to the field. In many respects, the behavior of this line is qualitatively different from that of the vortices encountered in type II superconductivity. For samples with mirror symmetry, this flux-induced vortex appears at the thin side for small fluxes and at the opposite side for large fluxes. We propose direct and indirect experimental methods which could test our predictions.Comment: 6 pages, Latex, 4 figs., uses RevTex, extended to situations far from cylindrical symmetr
    corecore