ВЕСЦІ НАЦЫЯНАЛЬНАЙ АКАДЭМІІ НАВУК БЕЛАРУСІ №3 2014 СЕРЫЯ ХІМІЧНЫХ НАВУК

ФІЗІЧНАЯ ХІМІЯ

УДК 66.097:66.069.84:66.094.25

А.Ю. ВОЛОДИН, Л.Л. ПОТАПОВА, Б.Х. ЧЕРЧЕС, Ю.Г. ЕГИАЗАРОВ

ПРИРОДА ДЕЙСТВИЯ КАТАЛИЗАТОРОВ НА ОСНОВЕ ВОЛОКНИСТЫХ ИОНИТОВ В ПРОЦЕССЕ ДЕЗОКСИГЕНАЦИИ ВОДЫ

Институт физико-органической химии НАН Беларуси

(Поступила в редакцию 08.04.2014)

В промышленности гетерогенно-каталитические процессы реализованы преимущественно в системе «газ-твердое тело». Менее распространен гетерогенный катализ в жидкой фазе. К нему, в частности, относится и процесс каталитической дезоксигенации воды, в основе которого лежит реакция восстановления растворенного в воде кислорода водородом либо другим восстановителем.

Механизм окисления водорода кислородом на металлических катализаторах включает образование на поверхности катализатора хемосорбированных атомов кислорода. Диссоциативная хемосорбция кислорода на поверхности металла протекает с относительно большой скоростью. Что же касается водорода, то предполагается, что он может вступать в реакцию как в молекулярной форме, так и в виде атомов, хемосорбированных на катализаторе.

В процессе дезоксигенации воды на палладийсодержащем катализаторе водород поглощается кластерами палладия (объемная сорбция) и диссоциирует на атомы (или ионы). Поэтому вероятность участия водорода в молекулярной форме в рассматриваемой каталитической реакции весьма мала.

По имеющимся литературным данным, кислород на поверхности твердого тела (кластера металла) может находиться в различных активированных состояниях. При их возникновении существенно меняется электронное состояние металла, свободные электроны которого в хемосорбции играют решающую роль. При столкновениях медленных электронов металла, обладающих малой энергией (не превышающей 3 эВ), с кислородом они могут захватываться молекулами O_2 . Эти процессы характеризуются низкой энергией и легко реализуются. Как показал Де Бур еще в середине прошлого века [1], первой стадией при хемосорбции кислорода на поверхности металла является образование ионов O_2^- . Установлено по результатам массспектрометрических исследований [2], что ионы O_2^- образуются при энергиях электрона порядка 1 эВ, а для образования из O_2 двух ионов O^- требуется 2 электрона с энергией 1,5 эВ.

Традиционно считается, что растворение водорода в металлах происходит с образованием твердых растворов и водород находится в металлах в атомарном виде. Однако некоторые исследователи придерживаются иного мнения. Так, Д. В. Сокольский с сотрудниками [3, 4] полагают, что растворенный в палладии, платине и никеле водород находится в протонированном состоянии. При теоретическом объяснении растворимости водорода в металлах авторы [5] используют протонную модель растворения водорода, предусматривающую диссоциативную хемосорбцию молекул водорода на поверхности металла и поглощение атомарного водорода, а затем диссоциацию абсорбированных атомов водорода на протоны и электроны. Предполагается, что в гидридах металлов VIII группы (палладий, платина, никель) освобождающиеся электроны переходят

в *d*-зоны, у которых плотность электронных термов (плотность состояний) гораздо выше, чем в *s*-зонах. Внедренный водород находится преимущественно в виде протонов в октаэдрических пустотах кубической гранецентрированной решетки этих металлов.

Механизм окисления водорода кислородом в присутствии оксидных каталитических систем отличается от такового на металлических катализаторах. Реакции с участием молекулярного кислорода на оксидных катализаторах в большинстве случаев идут с участием решеточного кислорода оксида, а функция молекулярного кислорода состоит в «залечивании» образующихся кислородных вакансий. Активность катализатора зависит от энергии связи кислорода с металлом в решетке оксида. Чем меньше энергия (прочность) связи, тем активнее оксидная система. Так, смешанные оксиды Me (II) и Me (III) со структурой шпинели [6–8] характеризуются подвижным (слабосвязанным) решеточным кислородом и обладают высокой активностью в реакциях окисления.

Результаты исследования, проведенного нами ранее [9], показали, что на основе волокнистых анионитов возможно получение палладийсодержащих катализаторов, обладающих высокой активностью в процессе дезоксигенации воды. В присутствии образцов, содержащих 0,15–0,3 мас.% Рd на анионите, количество остаточного кислорода в очищенной воде не превышает 12 мкг/л, что меньше норматива по данному показателю для объектов теплоэнергетики (20 мкг/л).

Однако мы не нашли в литературе исследовательских работ, непосредственно касающихся теоретических аспектов каталитической дезоксигенации воды, кинетики и механизма протекающих реакций, хотя опубликованы многочисленные патенты на способы гидрирования кислорода, растворенного в воде, в присутствии нанесенных катализаторов с палладием в качестве активного компонента.

Как было показано нами в [10], катализаторы на основе волокнистого амфолита ФИБАН X-1, содержащие в качестве активного компонента гидроксид железа, проявляют достаточно высокую активность в процессе дезоксигенации воды с использованием в качестве восстановителя водорода. Факт проявления гидроксидом железа каталитической активности в процессе дезоксигенации воды установлен нами впервые. В данной работе описаны представления авторов относительно природы каталитического действия волокнистых ионитов с нанесенным палладием или гидроксидом железа в исследуемой реакции, сформированные на основе анализа литературных данных и результатов проведенных экспериментов.

Экспериментальная часть

Приготовление катализаторов, содержащих гидроксиды Fe (II) и Fe (III). По методике [10] готовили образцы катализаторов, содержащие по 4,2 мас.% (в расчете на металл) гидроксидов Fe (III) и Fe (II) на ионите ФИБАН X-1, а также образец, активный компонент которого представляет собой смесь гидроксидов: 2,1 мас.% FeOOH + 2,1 мас.% Fe(OH)₂/ФИБАН X-1.

В качестве носителя использовали волокнистый хелатный ионит ФИБАН X-1, синтезированный, как описано в работе [10]. Обменная емкость ФИБАН X-1 по карбоксильным группам составляла 3,4 мг-экв/г, по аминогруппам – 0,8 мг-экв/г.

Для приготовления образца, содержащего гидроксид Fe (III), в качестве контактирующего раствора использовали солянокислый водный раствор хлорного железа FeCl₃. Для приготовления катализаторов, содержащих гидроксид Fe (II) или смесь гидроксидов, контактирующий раствор готовили из хлорида Fe (II) или его смеси с хлоридом Fe (III) соответственно. Концентрацию контактирующего раствора задавали из расчета на 5 мас.% железа в образце (ранее было установлено, что реальное содержание железа при этом составляет 4,2 мас.%).

Определение каталитической активности. Эксперименты по дезоксигенации воды проводили в проточном реакторе объемом 0,6 л на стендовой установке [10]. В опытах использовали воду, поступающую из водопроводной системы, и дистиллированную. Расход воды на входе в реактор составлял 30 л/ч (50 ч⁻¹). Водород подавали в количестве, превосходящем рассчитанное по стехиометрии реакции гидрирования содержащегося в очищаемой воде кислорода на 5–10 %. Давление в системе поддерживали на уровне 0,25–0,3 МПа. Содержание кислорода в воде определяли с помощью анализатора МАРК-501, водорода – с помощью анализатора МАВР-302Т.

Ядерная гамма-резонансная спектроскопия. Содержание в железосодержащем катализаторе катионов Fe³⁺ и Fe²⁺ определяли методом ядерной гамма-резонансной спектроскопии на ЯГРспектрометре MS2000 в режиме трансмиссионных измерений (геометрия на просвет). В спектрометре задействован быстродействующий спектрометрический тракт на основе нового сцинтилляционного детектора YAlO₃: Се, источник гамма-излучения ⁵⁷Со в матрице Rh активностью 15 мКи. Идентификацию валентного состояния изотопа ⁵⁷Fe в образцах проводили с помощью стандартного программного обеспечения MOSMOD. В указанных программах с помощью функции Гаусса учитывается распределение значений ΔE_Q . Степень соответствия аппроксимирующей кривой (суперпозиция нескольких подспектров) экспериментальным спектрам определялась по методу наименьших квадратов и оценивалась параметром χ^2 (не превышающем единицы). С целью унификации условий программной обработки с помощью программы MOSMOD ширина лоренцевой линии, описывающей спектральные линии, была фиксирована и составляла 0,15 мм/с.

Результаты и их обсуждение

Палладийсодержащий катализатор. К процессу гетерогенно-каталитической дезоксигенации воды может быть адаптирован механизм жидкофазного окисления водорода в присутствии металлокомплексов с палладием в качестве центрального иона [11, 12], а также механизм синтеза пероксида водорода на палладиевом катализаторе [13].

В соответствии с представлениями авторов [11, 12] процесс идет через стадию образования промежуточного комплекса водород-катализатор путем адсорбции водорода на активном центре [Pd]₂ с последующей диссоциацией молекулы водорода на атомы:

$$[Pd...Pd] + H_2 \rightarrow [H...Pd...Pd...H].$$

Кислород взаимодействует с атомом водорода с образованием адсорбированного радикала НО₂:

$$[H...Pd...Pd...H] + O_2 \rightarrow [H...Pd...Pd...HO_2]$$

с последующим образованием молекулы пероксида водорода и выходом ее в объем жидкой фазы:

$$[H...Pd...Pd...HO_2] \rightarrow [Pd...Pd] + H_2O_2.$$

Придерживаясь этого механизма реакции, авторы [12] тем не менее отмечают, что для его осуществления требуется значительная энергия на атомизацию водорода. Между тем реакция протекает при комнатной температуре и, по-видимому, не нуждается в высокой энергии активации. Поэтому авторы допускают, что стадия атомизации не является необходимой. Молекулы водорода могут вступать в координационную связь с кластерами из атомов палладия. При адсорбции молекулы кислорода на поверхности палладия возможно внутрикомплексное взаимодействие лигандов посредством электронного перераспределения с участием свободных 5*d*-орбиталей атома палладия.

В работе [13] приводится механизм окисления водорода растворенным в воде кислородом в процессе синтеза пероксида водорода в присутствии палладиевого катализатора, который состоит из следующих стадий:

$$\begin{split} & [\mathrm{Pd}/\mathrm{Pd}] + \mathrm{H}_2 \rightarrow \mathrm{H}[\mathrm{Pd}/\mathrm{Pd}]\mathrm{H}, \\ & \mathrm{H}[\mathrm{Pd}/\mathrm{Pd}]\mathrm{H} + \mathrm{O}_2 \rightarrow \mathrm{H}^+[\mathrm{Pd}/\mathrm{Pd}]\mathrm{HO}_2^-, \\ & \mathrm{H}^+[\mathrm{Pd}/\mathrm{Pd}]\mathrm{HO}_2^- + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{H}_3\mathrm{O}^+[\mathrm{Pd}/\mathrm{Pd}]\mathrm{HO}_2^-, \\ & \mathrm{H}_3\mathrm{O}^+[\mathrm{Pd}/\mathrm{Pd}]\mathrm{HO}_2^- \rightarrow \mathrm{H}_2\mathrm{O}_2 + \mathrm{H}_2\mathrm{O} + [\mathrm{Pd}/\mathrm{Pd}]\mathrm{HO}_2^-, \end{split}$$

Этот механизм отличается от предыдущего лишь тем, что промежуточный комплекс предполагается ионным. Первичным продуктом процесса окисления водорода растворенным кислородом является пероксид водорода, однако в отсутствие стабилизаторов он разлагается и практически единственным продуктом является вода. Используемые нами волокнистые катализаторы характеризуются высокой гидрофильностью, поэтому в процессе работы внешняя и внутренняя поверхности набухшего волокна заполнены водой. Кислород и водород могут адсорбироваться на активном центре катализатора только диффундируя из воды. Кислород в очищаемой воде находится в растворенном состоянии, а водород, растворимость которого в воде существенно ниже, может не раствориться в воде полностью. При этом часть водорода остается в воде в виде мельчайших пузырьков. Очевидно, что их размеры существенно превосходят размеры кластеров металла. Пузырьки водорода могут в режиме фильтрации «прилипать» к внешней поверхности волокна, блокируя его, тем самым затрудняя контакт очищаемой воды, содержащей некоторое количество водорода, растворенного на молекулярном уровне, с активными центрами катализатора (рис. 1).

Рис. 1. Схематическое изображение пузырька водорода, блокирующего активные центры катализатора

Для нормального функционирования каталитической системы необходимо создать такие условия, чтобы растворимость водорода в очищаемой воде была полной, поскольку процесс дезоксигенации воды начинается с хемосорбции растворенного в ней водорода на кластерах палладия и последующей его активации при прохождении в объем кластеров. При этом создаются благоприятные условия для хемосорбции и активации второго реагента – кислорода. Хемосорбированный кислород, принимая электрон из поверхностной зоны кластера палладия (медленные электроны), образует ион O_2^- . Он может принять электрон и от атома водорода с образованием протона и иона O_2^- . Ион O_2^- может принять второй электрон и диссоциировать на ионы O^- или, взаимодействуя с атомом водорода, образовать ион HO_2^- . Возможно также взаимодействие кислорода с атомарным водородом с образованием ионов O^- и протонов.

Учитывая сделанные на основе литературных данных обобщения, можно предложить наиболее вероятную схему механизма реакции восстановления кислорода в процессе дезоксигенации воды на волокнистом палладийсодержащем катализаторе:

Взаимодействие двух ОН-групп между собой приводит к образованию пероксида водорода. К такому же результату приводит взаимодействие иона HO₂⁻ с ионом гидроксония, полученным протонизацией молекулы воды. Пероксид водорода в соответствии с предлагаемой схемой разлагается с образованием H₂O и атомарного кислорода, который возвращается в процесс.

Железосодержащий катализатор. Выдвигаемая нами гипотеза каталитической активности нанесенного железосодержащего катализатора заключается в возможности частичного восстановления гидроксида железа (III) до Fe(OH)₂ в процессе дезоксигенации воды за счет растворенного в ней водорода и образования смешанной структуры гидратированных оксидов Fe (II) и Fe (III) с подвижным (слабосвязанным) решеточным кислородом. Решеточный кислород, слабо связанный с металлом, активен и легко взаимодействует с хемосорбированным водородом.

Гипотеза основана на том, что смешанные оксиды двух- и трехвалентного железа характеризуются высокой подвижностью решеточного кислорода по аналогии со смешанными оксидами Me (II) и Me (III) со структурой шпинели [6–8]. Следует отметить, что предлагаемый подход к объяснению каталитической активности гидроксидов железа в процессе дезоксигенации воды может быть обоснован лишь при выполнении определенных условий.

Первое условие заключается в том, чтобы в смешанной оксидной системе, состоящей из оксидов железа (II) и железа (III), решеточный кислород действительно обладал высокой подвижностью. В подтверждение выполнения этого условия можно привести работу [14], где приводятся рассчитанные с помощью молекулярно-механического (MM+) и полуэмпирического квантовохимического (PM3) методов энергии связи Fe–O для оксидов железа FeO и Fe₂O₃, а также для смешанной структуры Fe₃O₄, включающей оба оксида. Как оказалось, в структуре Fe₂O₃ длина одинарной связи Fe–O составляет 1,77 Å, а длина двойной – 1,48 Å. Низкоэнергетическое состояние резонансной структуры Fe₃O₄ (рис. 2) характеризуется длиной связи Fe–O, равной 3,9 Å для каждого из трех атомов железа, входящих в структуру. Более длинная, растянутая связь является, как известно, энергетически ослабленной и менее прочной связью.

Рис. 2. Длины связей Fe-O в оксидах железа

По аналогии со смешанной структурой оксидов железа, охарактеризованной выше, для системы, содержащей смесь гидроксидов Fe (II) и Fe (III), также будет характерна слабая связь решеточного кислорода с металлом. Ведь гидроксиды железа есть не что иное, как гидратированные оксиды, например: FeOOH=1/2Fe₂O₃·H₂O; Fe(OH)₃=1/2Fe₂O₃·3H₂O.

Следующее условие заключается в том, чтобы в процессе дезоксигенации воды было, возможно, частичное восстановление гидроксида трехвалентного железа до $Fe(OH)_2$ и образование смешанной гидроксидной структуры. Проверим расчетным путем, возможно ли восстановление FeOOH до Fe(OH)₂.

Расчет изменения энергии Гиббса ΔG^0 для реакции восстановления FeOOH водородом

FeOOH +
$$1/2H_2 = Fe(OH)_2$$
.
 $\Delta G^0_{298} = -560 \text{ кДж/моль} - для FeOOH; \Delta G^0_{298} = -572 \text{ кДж/моль} - для Fe(OH)_2 [15].$
 $\Delta G^0 = -572 \text{ кДж/моль} - (-560 \text{ кДж/моль}) = -12 \text{ кДж/моль}.$

Рассчитанное изменение энергии Гиббса показывает, что реакция может протекать самопроизвольно ($\Delta G^0 < 0$). Расчет э.д.с. реакции восстановления FeOOH растворенным водородом

 $FeOOH + 1/2H_2 = Fe(OH)_2.$

Для пары FeOOH/Fe(OH)₂ стандартный окислительно-восстановительный потенциал $E^0 = -0,67$ В, для пары H₂O/H₂ стандартный окислительно-восстановительный потенциал $E^0 = -0,83$ В [16].

 $E^{\circ} = -0,83$ В [16]. ΔE^{0} (э.д.с.) = $E^{0}_{\text{окислителя}} - E^{0}_{\text{восстановителя}} = -0,67$ В – (-0,83 В) = 0,16 В.

Э.д.с. положительна, следовательно, реакция должна протекать.

Таким образом, на основании литературных данных удается обосновать возможность частичного восстановления гидроксида Fe (III) до гидроксида Fe (II) и образования на их основе эффективной каталитической системы гидрирования растворенного в воде кислорода.

Для получения результатов, подтверждающих справедливость выдвинутой гипотезы, были проведены эксперименты по дезоксигенации воды в присутствии приготовленных образцов катализаторов, содержащих по 4,2 мас.% (в расчете на металл) гидроксидов Fe (III) и Fe (II) на ионите ФИБАН X-1, а также образца, активный компонент которого представляет собой смесь гидроксидов: 2,1 мас.% FeOOH + 2,1 мас.% Fe(OH)₂/ФИБАН X-1.

На рис. 3 представлены кинетические кривые изменения активности катализаторов в процессе дезоксигенации водопроводной воды. Полученные результаты свидетельствуют о том, что все синтезированные образцы в течение первых часов работы характеризуются заметным ростом активности. Через 5 ч опыта наиболее высокая конверсия O₂ наблюдается на катализаторе 4,2 мас.% Fe(OH)₂/ФИБАН X-1, наименьшая – на катализаторе 4,2 мас.% FeOOH/ ФИБАН X-1. После 7–8 ч опыта рост активности катализаторов с гидроксидом Fe (II) и смесью гидроксидов замедляется, а катализатора с гидроксидом Fe (III) – продолжается и начинает замедляться только после 12–13 ч работы.

Рис. 3. Кинетические кривые зависимости степени конверсии O₂ в процессе дезоксигенации водопроводной воды для катализаторов: *1* – 4,2 мас.% Fe(OH)₂/ФИБАН X-1; *2* – 2,1 мас.% FeOOH + 2,1 мас.% Fe(OH)₂/ФИБАН X-1; *3* – 4,2 мас.% FeOOH/ФИБАН X-1

Наблюдаемая разработка катализаторов, очевидно, обусловлена тем, что в процессе работы все они в присутствии растворенных O₂ и H₂ частично окисляются и восстанавливаются. Через определенное время (в условиях эксперимента) достигается термодинамически равновесный фазовый состав системы и стабилизируется ее каталитическая активность.

Стабильный уровень активности для катализатора с активным компонентом $Fe(OH)_2$ устанавливается после 20 ч работы и остается практически таким же до конца опыта (конверсия O_2 составляет ~80 %). Активность катализатора, полученного нанесением смеси гидроксидов,

растет до 35 ч эксперимента, затем стабилизируется на уровне 95%-ной конверсии кислорода. Стабилизация уровня активности катализатора с нанесенным гидроксидом Fe (III) наблюдается также на 35 ч работы, но на более высоком уровне (конверсия O₂ более 99 %).

Полученные результаты позволяют сделать вывод, что проявление высокой каталитической активности исследуемых образцов в процессе дезоксигенации воды действительно обусловлено изменением фазового состава каталитической системы в результате окислительно-восстановительных реакций, протекающих с участием растворенных в воде O_2 и H_2 . Высокая каталитическая активность достигается при образовании смешанной системы гидроксидов Fe (II) и Fe (III) оптимального фазового состава.

Относительно низкая активность образца 4,2 мас.% $Fe(OH)_2/\Phi U FAH X-1$ может быть следствием того, что гидролиз катионов Fe^{2+} в условиях приготовления исследуемых катализаторов протекает с более высокой скоростью, чем гидролиз катионов Fe^{3+} , что приводит к снижению дисперсности образующегося гидроксида. Следует также иметь в виду, что молекулы $Fe(OH)_2$, образующиеся в процессе гидролиза катионов Fe^{2+} , могут мигрировать по поверхности носителя и объединяться в первичные глобулярные образования быстрее, чем молекулы $Fe(OH)_3$ (из-за разницы в молекулярных размерах, массе и сорбционных свойствах), что также может повлиять на дисперсность.

Имеется еще одно обстоятельство, которое может оказывать влияние на состав и свойства исследуемой каталитической системы. Дело в том, что все эксперименты по дезоксигенации воды проводились с использованием водопроводной воды в качестве исходного объекта. Водопроводная вода содержит в качестве примесей различные соли, в том числе и водорастворимые соли двухвалентного железа. По данным лабораторного анализа содержание Fe (II) в используемой водопроводной воде колеблется в течение года в пределах 0,10-0,15 мг/л. Естественно предположить, что катионы Fe²⁺ в процессе работы могут контактировать с ионитом, обмениваться на протоны карбоксильных групп, затем гидролизоваться и в виде гидроксида двухвалентного железа присоединяться к сформировавшимся ранее ассоциатам гидроксида Fe (III), образуя таким образом смешанные гидроксиды. Однако этот путь модифицирования активного компонента требует относительно длительного времени. Аналогичный результат, но гораздо быстрее может быть достигнут в случае, когда катион Fe²⁺ сорбируется непосредственно на поверхности ассоциата гидроксида Fe (III) и гидролизуется, образуя Fe(OH)₂.

Чтобы выяснить, насколько велико это влияние на каталитическую активность системы, проведен специальный эксперимент по дезоксигенации дистиллированной воды в присутствии образца 4,2 мас.% FeOOH/ ФИБАН X-1. Полученные результаты в виде графической зависимости активности катализатора от времени опыта представлены на рис. 4. Для сравнения на рисунке показана соответствующая кривая для дезоксигенации водопроводной воды.

Рис. 4. Кинетические кривые зависимости конверсии O₂ в процессе дезоксигенации воды в присутствии катализатора 4,2 мас.% FeOOH/ФИБАН X-1: *1* – водопроводная вода; *2* – дистиллированная вода

Основной вывод, который можно сделать из результатов эксперимента, заключается в том, что как в отсутствие катионов Fe^{2+} в очищаемой воде (кривая 2, дистиллированная вода), так и в их присутствии (кривая *I*, водопроводная вода) закономерности изменения активности катализатора во времени практически одинаковы. Следовательно, дополнительное вовлечение катионов Fe^{2+} и соответственно гидроксида железа (II) в состав катализатора не оказывает существенного влияния на природу его активности. В то же время катионы Fe^{2+} , дополнительно введенные в состав катализатора, оказывают на него промотирующее влияние. Если в опыте с водопроводной водой 99%-ная конверсия кислорода достигается на 35-м часу работы катализатора, то в опыте с дистиллированной водой только на 48-м.

На спектрах ЯГР (рис. 5) исследованных образцов катализатора 4,2 мас.% FeOOH/ФИБАН X-1 наблюдается доминирующий вклад квадрупольного дублета с параметрами δ =0,33–0,38 мм/с и ΔE_Q =0,77–0,98 мм/с локального окружения ионов железа, соответствующего высо-коспиновой конфигурации ионов железа в валентном состоянии Fe³⁺. Наблюдаемая асимметрия спектральных линий дублета, а также уширение правой линии (рис. 5, δ) указывает на возможное присутствие в спектре дублета с параметрами δ =1,12–1,39 мм/с и ΔE_Q =1,83–2,65 мм/с, которые могут быть идентифицированы как валентное состояние Fe²⁺. Параметры δ и ΔE_Q , определенные на основании анализа ЯГР-спектров, приведены в таблице.

Рис. 5. Спектры ЯГР катализатора 4,2 мас.% FeOOH/ФИБАН А-1: *а* – свежеприготовленного, *б* – после работы в процессе дезоксигенации водопроводной воды в течение 40 ч

Значения параметров сверхтонких взаимодействий, определенные из ЯГР-спектров, и содержание Fe³⁺ и Fe²⁺

Катализатор 4,2 мас% FeOOH/ФИБАН X-1	Валентное состояние	δ, мм/с	$\Delta E_{ m Q}$, мм/с	Содержание, %
Свежеприготовленный	Fe ³⁺	0,33	0,77	100
После работы в течение 40 ч (водопроводная вода)	Fe ²⁺	1,12	2,65	13
	Fe ³⁺	0,38	0,98	87

Как было отмечено выше, активность смешанной фазы гидроксидов железа обусловлено наличием подвижного решеточного кислорода, который легко взаимодействует с молекулярным водородом. Предполагаемая упрощенная схема механизма протекающих реакций может быть выражена следующим образом:

$$Fe(OH)_2 \cdot 2FeOOH \cdot + H_2 \rightarrow 3Fe(OH)_2$$
 (1)

$$3Fe(OH)_2 + O_2 \rightarrow Fe(OH)_2 \cdot 2FeOOH \cdot + H_2O + O$$
 (2)

$$O + H_2 \rightarrow H_2O \tag{3}$$

$$2H_2 + O_2 \rightarrow 2H_2O$$

33

Водород, растворенный в воде, сорбируется на активном центре и взаимодействует с решеточным кислородом смешанной фазы гидроксидов железа. При этом Fe (III) восстанавливается до Fe (II) (реакция 1). Растворенный в воде кислород сорбируется на поверхности восстановленного гидроксида. Активный центр, лишенный решеточного кислорода, отрывает атом кислорода от хемосорбированной молекулы О₂ и регенерируется. При этом Fe (II) окисляется до Fe (III) (реакция 2). Оставшийся атом кислорода взаимодействует с хемосорбированной молекулой водорода, давая воду (реакция 3).

Таким образом, химизм процесса дезоксигенации воды, представляющего собой окислительно-восстановительное взаимодействие растворенных в воде кислорода и водорода, на катализаторах, содержащих в качестве активного компонента палладий или гидроксиды железа, не одинаков. Установленные различия обусловлены разным химическим составом активных компонентов исследуемых катализаторов, определяющим природу их действия.

Работа выполнена в рамках проекта Белорусского республиканского фонда фундаментальных исследований Х13-132.

Литература

1. De Boer J. H. // Adv. Catal. 1957. N. 9. P. 472-479.

2. Mass Spectrometry of Organic Ions / F. W. McLafferty, ed. Acad. Press: New York-London, 1963.

 Сокольский Д. В. // Вестник РАН. 1971. № 1. С. 91–99.
 Сокольский Д. В., Друзь В. А. Введение в теорию гетерогенного катализа. 2-е изд., перераб. и доп. М.: Высш. школа, 1981.

5. Блументаль Г., Энгельс З., Фиц И., Хабердитиль В., Хекнер К.-Х., Хенрион Г., Ландсберг Р., Шмидт В., Шольц Г., Штарке П., Вильке И., Вильке К.-Т. Анорганикум: В 2-х т. Т. 1. Пер. с нем. / Под ред. Л. Кольдица. М.: Мир, 1984.

6. Sergent N., Lamonier J. F., Aboukais A. // Chem. Mater. 2000. Vol. 12. P. 3830–3835.

7. Trovarelli A., Boaro M., Rocchini E. et al. // J. Alloys Comp. 2001. Vol. 323–324. P. 584–591.

8. Kuznetsova T. G., Sadykov V. A., Veniaminov S. A. et al. // Catalysis Today. 2004. Vol. 91-92. P. 161-164.

9. Егиазаров Ю.Г., Володин А.Ю., Шункевич А.А., Черчес Б.Х., Радкевич В.З., Горбацевич М.Ф., Потапова Л.Л. // Весці НАН Беларусі. Сер. хім. навук. 2013. №2. С. 41-49.

10. Володин А.Ю., Лысенко Г.Н., Горбацевич М.Ф., Шункевич А.А., Черчес Б.Х., Егиазаров Ю.Г. // Весці НАН Беларусі. Сер. хім. навук. 2014. № 1. С. 42-50.

11. Моисеев И. И. Катализ кластерами палладия / Механизм катализа. Т. 1. Природа каталитического действия. Новосибирск: Наука, 1984. С. 72-87.

12. Варгафтик М. Н., Новгородцев Б. Н., Моисеев И. И. и др. // Кинетика и катализ. 1998. Т.39, № 6. С. 806-824.

13. Ипполитов Е.Г., Артемов А.В., Трипольская Т.А., Похабова И.В. // Катализ в промышленности. 2001. №3. С. 4.

14. Maharramov A. M., Alieva I. N., Abbasova G. D. et al. // Digest Journal of Nanomaterials and Biostructures. 2011. Vol. 6. N 2. P. 419-431.

15. http://www.chem.msu.su/rus/tsiv/Fe/

16. http://www.alhimik.ru/teleclass/sprav/prop6.shtml

A. Yu. VOLODIN, L.L. POTAPOVA, B. Kh. CHERCHES, Yu. G. YEGIAZAROV

CATALYSTS BASED ON FIBROUS ION EXCHANGERS: THE NATURE OF THEIR CATALYTIC ACTION IN WATER DEOXYGENATION

Summary

Authors' ideas on the chemistry of water deoxygenation on fibrous catalysts containing palladium or iron hydroxides, are presented. The most plausible mechanisms for oxygen reduction on these catalysts are suggested.