85,650 research outputs found
Existence versus Exploitation: The Opacity of Backbones and Backdoors Under a Weak Assumption
Backdoors and backbones of Boolean formulas are hidden structural properties.
A natural goal, already in part realized, is that solver algorithms seek to
obtain substantially better performance by exploiting these structures.
However, the present paper is not intended to improve the performance of SAT
solvers, but rather is a cautionary paper. In particular, the theme of this
paper is that there is a potential chasm between the existence of such
structures in the Boolean formula and being able to effectively exploit them.
This does not mean that these structures are not useful to solvers. It does
mean that one must be very careful not to assume that it is computationally
easy to go from the existence of a structure to being able to get one's hands
on it and/or being able to exploit the structure.
For example, in this paper we show that, under the assumption that P
NP, there are easily recognizable families of Boolean formulas with strong
backdoors that are easy to find, yet for which it is hard (in fact,
NP-complete) to determine whether the formulas are satisfiable. We also show
that, also under the assumption P NP, there are easily recognizable sets
of Boolean formulas for which it is hard (in fact, NP-complete) to determine
whether they have a large backbone
Summary of the electromagnetic compatibility evaluation of the proposed satellite power system
The effects of the proposed solar power satellite (SPS) operations on electronic equipment and systems by fundamental, harmonic, and intermodulation component emissions from the orbital station; and the fundamental, harmonic, and structural intermodulation emissions from the rectenna site were evaluated. The coupling and affects interactions affecting a wide spectrum of electronic equipment are considered. The primary EMC tasking areas are each discussed separately
Housing flexibility effects on rotor stability
Preliminary rotordynamic evaluations are performed with a housing stiffness assumption that is typically determined only after the hardware is built. In addressing rotor stability, a rigid housing assumption was shown to predict an instability at a lower spin speed than a comparable flexible housing analysis. This rigid housing assumption therefore provides a conservative estimate of the stability threshold speed. A flexible housing appears to act as an energy absorber and dissipated some of the destabilizing force. The fact that a flexible housing is usually asymmetric and considerably heavier than the rotor was related to this apparent increase in rotor stability. Rigid housing analysis is proposed as a valuable screening criteria and may save time and money in construction of elaborate housing finite element models for linear stability analyses
Heat-Cleaned Nextel in MMOD Shielding
Meteoroid and orbital debris (MMOD) shielding can include NextelTM ceramic cloth in the outer layers of the shielding to enhance MMOD breakup. The Nextel fabric can contain size (or sizing) which aids in manufacture of the fabric. Sizing is a starch, oil or waxy material that is added to the rovings and yarns to protect the fibers from being cut or broken during the fabric manufacturing process and by later handling. For spacecraft applications, sizing is removed by heat-cleaning to reduce/eliminate off-gassing during vacuum operations. After the sizing is removed, the fibers in the woven fabric are prone to breakage during handling which reduces fabric strength. Because heat-cleaned Nextel tends to shed fibers that can be irritating to workers, the usual practice for hypervelocity impact tests is to use Nextel with sizing. The reduced strength of heat-cleaned Nextel does not typically effect the performance of MMOD shields with Nextel used in outer layers of the shield, because the density and areal density of the ceramic fibers in the fabric control MMOD breakup (not fabric strength). This paper provides data demonstrating that hypervelocity impact protection performance is not adversely altered for shields containing heat-cleaned Nextel compared to Nextel with sizing
Planetary observations at millimeter wavelengths
Observations of the Sun, Moon, Mercury, Venus, Mars, Jupiter, and Saturn were made at 3.1 mm and 8.6 mm wavelengths with a 16-foot radio telescope between March and August, 1971. Absolute brightness temperature data are given. All errors are one standard deviation and include uncertainties in antenna gain calibration. The solar and lunar temperatures are in excellent agreement with published observations. The planetary measurements at 3.1 mm are consistently higher than previous results. The implications of higher temperatures with respect to existing atmospheric and surface models are discussed
Dynamical Stability of Witten Rings
The dynamical stability of cosmic rings, or vortons, is investigated for the
particular equation of state given by the Witten bosonic model. It is found
that there exists a finite range of the state parameter for which the vorton
states are actually stable against dynamical perturbations. Inclusion of the
electromagnetic self action into the equation of state slightly shrinks the
stability region but otherwise yields no qualitative difference. If the Witten
bosonic model represents a good approximation for more realistic string models,
then the cosmological vorton excess problem can only be solved by assuming
either that strings are formed at low energy scales or that some quantum
instability may develop at a sufficient rate.Comment: 11 pages, LaTeX-ReVTeX (v.3), 2 figures available upon request, DAMTP
R-94/1
Limits of sympathetic cooling of fermions: The role of the heat capacity of the coolant
The sympathetic cooling of an initially degenerate Fermi gas by either an
ideal Bose gas below or an ideal Boltzmann gas is investigated. It is
shown that the efficiency of cooling by a Bose gas below is by no means
reduced when its heat capacity becomes much less than that of the Fermi gas,
where efficiency is measured by the decrease in the temperature of the Fermi
gas per number of particles evaporated from the coolant. This contradicts the
intuitive idea that an efficient coolant must have a large heat capacity. In
contrast, for a Boltzmann gas a minimal value of the ratio of the heat
capacities is indeed necessary to achieve T=0 and all of the particles must be
evaporated.Comment: 5 pages, 3 figure
Configurations of Handles and the Classification of Divergences in the String Partition Function
The divergences that arise in the regularized partition function for closed
bosonic string theory in flat space lead to three types of perturbation series
expansions, distinguished by their genus dependence. This classification of
infinities can be traced to geometrical characteristics of the string
worldsheet. Some categories of divergences may be eliminated in string theories
formulated on compact manifolds.Comment: 24 pages, DAMTP-R/94/1
Hypervelocity Impact of Composite Overwrap Pressure Vessels
There is a limited amount of hypervelocity impact (HVI) data on pressurized composite overwrapped pressure vessels (COPV). In recent years, NASA has performed HVI tests to characterize impact conditions resulting in either leak or burst of the COPVs representative of spacecraft hardware. This paper reports on the results of 40 tests that have been conducted on several types of COPV configurations, pressurized by inert gas to near the vessels rated maximum expected operating pressure (MEOP). These tests were used to better understand COPV response under HVI conditions and develop ballistic limit equations (BLE) related to these tests
- …
