589 research outputs found

    Biogeodynamics in tropical and boreal forests

    Get PDF
    Biogeodynamical interactions in tropical and boreal forest ecosystems are important regionally and globally. These ecosystems form the major continental carbon pools, and processes within these biomes control carbon dioxide flux rates between the continents and the atmosphere. Continued ecodynamic disruptions in these forests regions may perturb regional and possibly global carbon, energy and hydrosphere interactions

    Excitation of MHD waves in magnetized anisotropic cosmologies

    Full text link
    The excitation of cosmological perturbations in an anisotropic cosmological model and in the presence of a homogeneous magnetic field was studied, using the resistive magnetohydrodynamic (MHD) equations. We have shown that fast-magnetosonic modes, propagating normal to the magnetic field grow exponentially and saturated at high values, due to the resistivity. We also demonstrate that the jeans-like instabilities are enhanced inside a resistive and the formation of condensations formed within an anisotropic fluid influence the growing magnetosonic waves.Comment: 12 pages, RevTex, 5 figures ps, accepted for publication to Astronomy and Astrophysic

    The orthogonal fitting procedure for determination of the empirical {\Sigma} - D relations for supernova remnants: application to starburst galaxy M82

    Full text link
    The radio surface brightness-to-diameter ({\Sigma} - D) relation for supernova remnants (SNRs) in the starburst galaxy M82 is analyzed in a statistically more robust manner than in the previous studies that mainly discussed sample quality and related selection effects. The statistics of data fits in log {\Sigma} - log D plane are analyzed by using vertical (standard) and orthogonal regressions. As the parameter values of D - {\Sigma} and {\Sigma} - D fits are invariant within the estimated uncertainties for orthogonal regressions, slopes of the empirical {\Sigma} - D relations should be determined by using the orthogonal regression fitting procedure. Thus obtained {\Sigma} - D relations for samples which are not under severe influence of the selection effects could be used for estimating SNR distances. Using the orthogonal regression fitting procedure {\Sigma} - D slope {\beta} \approx 3.9 is obtained for the sample of 31 SNRs in M82. The results of implemented Monte Carlo simulations show that the sensitivity selection effect does not significantly influence the slope of M82 relation. This relation could be used for estimation of distances to SNRs that evolve in denser interstellar environment, with number denisty up to 1000 particles per cm3 .Comment: 14 pages, 3 figures, no changes, previous version had a typo in publication related comment, accepted for publication in Ap

    Detection of microgauss coherent magnetic fields in a galaxy five billion years ago

    Full text link
    Magnetic fields play a pivotal role in the physics of interstellar medium in galaxies, but there are few observational constraints on how they evolve across cosmic time. Spatially resolved synchrotron polarization maps at radio wavelengths reveal well-ordered large-scale magnetic fields in nearby galaxies that are believed to grow from a seed field via a dynamo effect. To directly test and characterize this theory requires magnetic field strength and geometry measurements in cosmologically distant galaxies, which are challenging to obtain due to the limited sensitivity and angular resolution of current radio telescopes. Here, we report the cleanest measurements yet of magnetic fields in a galaxy beyond the local volume, free of the systematics traditional techniques would encounter. By exploiting the scenario where the polarized radio emission from a background source is gravitationally lensed by a foreground galaxy at z = 0.439 using broadband radio polarization data, we detected coherent ÎĽ\muG magnetic fields in the lensing disk galaxy as seen 4.6 Gyrs ago, with similar strength and geometry to local volume galaxies. This is the highest redshift galaxy whose observed coherent magnetic field property is compatible with a mean-field dynamo origin.Comment: 29 pages, 5 figures (including Supplementary Information). Published in Nature Astronomy on August 28, 201

    Lubrication in aqueous solutions using cationic surfactants ? a study of static and dynamic forces

    No full text
    This paper concerns lubrication in aqueous surfactant systems where the surfactants adsorb at surfaces, in relative motion, forming either a surfactant monolayer or a multi- (liquid crystalline) layer. The surfactants were of two kinds, viz., a double chain cationic surfactant, didodecyldimethylammonium bromide, DDAB, and a single chain cationic surfactant, dodecyltrimethylammonium bromide, DTAB. Excellent film forming capability was shown for DDAB and interpreted as the result of good packing of the surfactant molecules at the surfaces, i.e., the inherent ability of the surfactant molecules to form liquid crystalline structures at the surface, resulting in good load-carrying capability. This is also reflected in the bulk properties of the surfactants, where DDAB show lamellar liquid crystalline phases at concentrations much lower than DTAB, which does not show good lubrication properties. The results are discussed in terms of film stability of a surfactant layer adsorbed at the surface, which in turn is correlated to the critical packing parameter of the surfactant, in analogy with the Kabalnov?Wennerström theory of emulsion droplet coalescence (Kabalnov, A.; Wennerström, H. Langmuir 1996, 12, 276). The systems were characterized using (i) the surface force apparatus determining the interaction forces between the adsorbed layers at the surfaces and (ii) the EHD rig (elastohydrodynamic rig) determining film formation under shear. The adsorption kinetics and composition at the surface were determined by a quartz crystal microbalance and X-ray photoelectron spectroscop

    Wide-field global VLBI and MERLIN combined monitoring of supernova remnants in M82

    Full text link
    From a combination of MERLIN (Multi-Element Radio-Linked Interferometer Network) and global VLBI (Very Long Baseline Interferometry) observations of the starburst galaxy M82, images of 36 discrete sources at resolutions ranging from ~3 to ~80 mas at 1.7 GHz are presented. Of these 36 sources, 32 are identified as supernova remnants, 2 are HII regions, and 3 remain unclassified. Sizes, flux densities and radio brightnesses are given for all of the detected sources. Additionally, global VLBI only data from this project are used to image four of the most compact radio sources. These data provide a fifth epoch of VLBI observations of these sources, covering a 19-yr time-line. In particular, the continued expansion of one of the youngest supernova remnants, 43.31+59.3 is discussed. The deceleration parameter is a power-law index used to represent the time evolution of the size of a supernova remnant. For the source 43.31+59.3, a lower limit to the deceleration parameter is calculated to be 0.53+/-0.06, based on a lower limit of the age of this source.Comment: 31 pages, 12 figures, 7 table

    Detailed Radio Spectra of Selected Compact Sources in the Nucleus of M82

    Get PDF
    We have determined detailed radio spectra for 26 compact sources in the starburst nucleus of M82, between 74 and 1.3 cm. Seventeen show low-frequency turnovers. One other has a thermal emission spectrum, and we identify it as an HII region. The low frequency turnovers are due to absorption by the interstellar gas in M82. New information on the AGN candidate 44.01+595, shows it to have a non-thermal falling powerlaw spectrum at the highest frequencies, and that it is strongly absorbed below 2 GHz. We derive large magnetic fields in the supernova remnants, of order 1-2 milliGauss, hence large pressures in the sources suggest that the brightest ones are either expanding or are strongly confined by a dense interstellar medium. From the largest source in our sample, we derive a supernova rate of 0.016 SN/yr.Comment: 19 pages, 7 tables, 29 figures, LaTeX, requires AAS macros v. 4.0. To appear in ApJ July 20, 199

    A Faraday Rotation Search for Magnetic Fields in Large Scale Structure

    Full text link
    Faraday rotation of radio source polarization provides a measure of the integrated magnetic field along the observational lines of sight. We compare a new, large sample of Faraday rotation measures (RMs) of polarized extragalactic sources with galaxy counts in Hercules and Perseus-Pisces, two nearby superclusters. We find that the average of RMs in these two supercluster areas are larger than in control areas in the same galactic latitude range. This is the first RM detection of magnetic fields that pervade a supercluster volume, in which case the fields are at least partially coherent over several megaparsecs. Even the most conservative interpretation of our observations, according to which Milky Way RM variations mimic the background supercluster galaxy overdensities, puts constraints on the IGM magneto-ionic ``strength'' in these two superclusters. We obtain an approximate typical upper limit on the field strength of about 0.3 microGauss l/(500 kpc), when we combine our RM data with fiducial estimates of electron density from the environments of giant radio galaxies, and of the warm-hot intergalactic medium (WHIM).Comment: 8 pages, 3 figures, 1 table, to appear in the Astrophysical Journa

    Cascading on extragalactic background light

    Full text link
    High-energy gamma-rays propagating in the intergalactic medium can interact with background infrared photons to produce e+e- pairs, resulting in the absorption of the intrinsic gamma-ray spectrum. TeV observations of the distant blazar 1ES 1101-232 were thus recently used to put an upper limit on the infrared extragalactic background light density. The created pairs can upscatter background photons to high energies, which in turn may pair produce, thereby initiating a cascade. The pairs diffuse on the extragalactic magnetic field (EMF) and cascade emission has been suggested as a means for measuring its intensity. Limits on the IR background and EMF are reconsidered taking into account cascade emissions. The cascade equations are solved numerically. Assuming a power-law intrinsic spectrum, the observed 100 MeV - 100 TeV spectrum is found as a function of the intrinsic spectral index and the intensity of the EMF. Cascades emit mainly at or below 100 GeV. The observed TeV spectrum appears softer than for pure absorption when cascade emission is taken into account. The upper limit on the IR photon background is found to be robust. Inversely, the intrinsic spectra needed to fit the TeV data are uncomfortably hard when cascade emission makes a significant contribution to the observed spectrum. An EMF intensity around 1e-8 nG leads to a characteristic spectral hump in the GLAST band. Higher EMF intensities divert the pairs away from the line-of-sight and the cascade contribution to the spectrum becomes negligible.Comment: 5 pages, to be published as a research note in A&

    Magnetohydrodynamics and Plasma Cosmology

    Full text link
    We study the linear magnetohydrodynamic (MHD) equations, both in the Newtonian and the general-relativistic limit, as regards a viscous magnetized fluid of finite conductivity and discuss instability criteria. In addition, we explore the excitation of cosmological perturbations in anisotropic spacetimes, in the presence of an ambient magnetic field. Acoustic, electromagnetic (e/m) and fast-magnetosonic modes, propagating normal to the magnetic field, can be excited, resulting in several implications of cosmological significance.Comment: 9 pages, RevTeX, To appear in the Proceedings of the Peyresq X Meeting, IJTP Conference Serie
    • …
    corecore