122 research outputs found

    A semidefinite relaxation procedure for fault-tolerant observer design

    Get PDF
    A fault-tolerant observer design methodology is proposed. The aim is to guarantee a minimum level of closed-loop performance under all possible sensor fault combinations while optimizing performance under the nominal, fault-free condition. A novel approach is proposed to tackle the combinatorial nature of the problem, which is computationally intractable even for a moderate number of sensors, by recasting the problem as a robust performance problem, where the uncertainty set is composed of all combinations of a set of binary variables. A procedure based on an elimination lemma and an extension of a semidefinite relaxation procedure for binary variables is then used to derive sufficient conditions (necessary and sufficient in the case of one binary variable) for the solution of the problem which significantly reduces the number of matrix inequalities needed to solve the problem. The procedure is illustrated by considering a fault-tolerant observer switching scheme in which the observer outputs track the actual sensor fault condition. A numerical example from an electric power application is presented to illustrate the effectiveness of the design

    Fault-tolerant Wide-area Control for Power Oscillation Damping

    No full text
    The effectiveness of using both local and remote (wide-area) feedback signals for power oscillation damping (POD) controllers is first demonstrated. The challenge is then to guarantee a minimum level of dynamic performance with only the local signals following a sudden loss of remote signals. A case study on the Nordic equivalent system is presented to show that the closed-loop response could deteriorate if the remote signals are lost. A fault-tolerant control (FTC) design methodology is presented to solve this problem and ensure an acceptable performance level even in case of loss of remote signals. The FTC design methodology is based on simultaneous regional pole-placement for normal and loss of (remote) signals conditions. First the problem is solved non-iteratively using a Linear Matrix Inequality (LMI) approximation and then it is shown that, although this procedure is linear and easy to implement, it has a drawback: the value of one of the control matrices is fixed before calculating the others. An iterative procedure is presented instead to ameliorate this problem and potentially improve the damping of the system. Case studies on the Nordic equivalent system confirm that the proposed iterative fault tolerant controller (FTCit) is able to improve performance against the non-iterative fault tolerant controller (FTC) and produce acceptable performance in case of loss of the remote signals while the response with a CC is unacceptable if a fault occurs

    Integration and management of PV-battery systems in the grid

    Get PDF
    The paper describes recent developments and implementation of a method and a prototype solving the problem of optimal integration of PV-battery energy storage systems into the power grid. The first practical results achieved in cooperation with ABB Switzerland Ltd. using a real-time prototype of the developed advanced battery controller and the largest Li-Ion battery installed in Switzerland at the electric power utility of the canton of Zurich (EKZ) are presented

    Fault-tolerant Control Design to Enhance Damping of Inter-area Oscillations in Power Grids

    Get PDF
    SUMMARY In this paper passive and active approaches for the design of fault-tolerant controllers (FTCs) are presented. The FTCs are used to improve the damping of inter-area oscillations in a power grid. The effectiveness of using a combination of local and remote (wide-area) feedback signals is first demonstrated. The challenge is then to guarantee a minimum level of dynamic performance following a loss of remote signals. The designs are based on regional pole-placement using Linear Matrix Inequalities (LMIs). First, a passive FTC is proposed. It is shown that the computation of the controller reduces to the solution of bilinear matrix inequalities. An iterative procedure is then used to design the controller. Next, as an alternative to active, time varying controllers, one for each fault scenario, we propose an approach for the design of a 'minimal switching' FTC in which only one controller is designed, but where a simple switch is incorporated into the controller structure. A case study in a linear and nonlinear Nordic equivalent system is presented to show that the closed-loop response using a conventional control (CC) design could deteriorate the performance or even destabilize the system if the remote signals are lost and to demonstrate the effectiveness of the proposed FTC designs. KEY WORDS: Fault-tolerant control, regional pole-placement, simultaneous design, power oscillation damping, local and remote feedback

    Peer-to-Peer energy trading in micro/mini-grids for local energy communities: A review and case study of Nepal

    Get PDF
    Distributed Energy Resources (DERs) are being integrated into the power market by customers rather than large scale energy suppliers, thereby slowly transforming the centralized, unidirectional market to a decentralized, bidirectional market and transitioning customers into prosumers. Various system architectures are used in the real field to coordinate the energy distribution in the micro/ mini-grids integrated with DERs, all of which have their strengths, weaknesses and challenges. Peer-to-peer (P2P) is an emerging architecture in the field of electrical energy trading and Distributed Generation (DG) management that can be applied in local energy markets. This paper focuses on P2P energy trading, with an in-depth discussion on its various operating algorithms, their principles, characteristics, features and scope through state of art review on P2P. Furthermore, the energy system of Nepal is used as a case study in this paper, and the micro/mini-grids of Nepal and their associated challenges, constraints and opportunities for improvement are discussed. Finally, an energy trading model is proposed to address the problems occurring in the specific case of Nepalese energy market
    • 

    corecore