1,615 research outputs found
The role of -induced reactions on lead and iron in neutrino detectors
We have calculated cross sections and branching ratios for neutrino induced
reactions on ^{208}Pb and ^{56}Fe for various supernova and
accelerator-relevant neutrino spectra. This was motivated by the facts that
lead and iron will be used on one hand as target materials in future neutrino
detectors, on the other hand have been and are still used as shielding
materials in accelerator-based experiments. In particular we study the
inclusive ^{56}^{56}Co and ^{208}^{208}Bi cross
sections and calculate the neutron energy spectra following the decay of the
daughter nuclei. These reactions give a potential background signal in the
KARMEN and LSND experiment and are discussed as a detection scheme for
supernova neutrinos in the proposed OMNIS and LAND detectors. We also study the
neutron-emission following the neutrino-induced neutral-current excitation of
^{56}Fe and ^{208}Pb.Comment: 23 pages (including 7 figures
Muon capture on nuclei with N > Z, random phase approximation, and in-medium renormalization of the axial-vector coupling constant
We use the random phase approximation to describe the muon capture rate on
Ca,Ca, Fe, Zr, and Pb. With
Ca as a test case, we show that the Continuum Random Phase
Approximation (CRPA) and the standard RPA give essentially equivalent
descriptions of the muon capture process. Using the standard RPA with the free
nucleon weak form factors we reproduce the experimental total capture rates on
these nuclei quite well. Confirming our previous CRPA result for the
nuclei, we find that the calculated rates would be significantly lower than the
data if the in-medium quenching of the axial-vector coupling constant were
employed.Comment: submitted to Phys. Rev.
Neutrino induced transitions between the ground states of the A=12 triad
Neutrino induced reactions on C, an ingredient of liquid
scintillators, have been studied in several experiments. We show that for
currently available neutrino energies, 300 MeV, calculated
exclusive cross sections CN for both muon
and electron neutrinos are essentially model independent, provided the
calculations simultaneously describe the rates of several other reactions
involving the same states or their isobar analogs. The calculations agree well
with the measured cross sections, which can be therefore used to check the
normalization of the incident neutrino spectrum and the efficiency of the
detector.Comment: 9 pages REVTEX, 2 postscript figures, text and figures available at
http://www.krl.caltech.edu/preprints/MAP.htm
Monitoring surface resonances on Co2MnSi(100) by spin-resolved photoelectron spectroscopy
The magnitude of the spin polarization at the Fermi level of ferromagnetic
materials at room temperature is a key property for spintronics. Investigating
the Heusler compound CoMnSi a value of 93 for the spin polarization has
been observed at room temperature, where the high spin polarization is related
to a stable surface resonance in the majority band extending deep into the
bulk. In particular, we identified in our spectroscopical analysis that this
surface resonance is embedded in the bulk continuum with a strong coupling to
the majority bulk states. The resonance behaves very bulk-like, as it extends
over the first six atomic layers of the corresponding (001)-surface. Our study
includes experimental investigations, where the bulk electronic structure as
well as surface-related features have been investigated using spin-resolved
photoelectron spectroscopy (SR-UPS) and for a larger probing depth
spin-integrated high energy x-ray photoemission spectroscopy (HAXPES). The
results are interpreted in comparison with first-principles band structure and
photoemission calculations which consider all relativistic, surface and
high-energy effects properly.Comment: 9 pages, 8 figures, Heusler alloy, electronic structure and
photoemissio
Shell-model calculations of neutrino scattering from 12C
Neutrino reaction cross-sections, , ,
-capture and photoabsorption rates on C are computed within a
large-basis shell-model framework, which included excitations up to
. When ground-state correlations are included with an open
-shell the predictions of the calculations are in reasonable agreement with
most of the experimental results for these reactions. Woods-Saxon radial wave
functions are used, with their asymptotic forms matched to the experimental
separation energies for bound states, and matched to a binding energy of 0.01
MeV for unbound states. For comparison purposes, some results are given for
harmonic oscillator radial functions. Closest agreement between theory and
experiment is achieved with unrestricted shell-model configurations and
Woods-Saxon radial functions. We obtain for the neutrino-absorption inclusive
cross sections: cm for the
decay-in-flight flux in agreement with the LSND datum of
cm; and cm for the decay-at-rest flux, less than the
experimental result of cm.Comment: 19 pages. ReVTeX. No figure
Microscopic theories of neutrino-^{12}C reactions
In view of the recent experiments on neutrino oscillations performed by the
LSND and KARMEN collaborations as well as of future experiments, we present new
theoretical results of the flux averaged and
cross sections. The approaches used are
charge-exchange RPA, charge-exchange RPA among quasi-particles (QRPA) and the
Shell Model. With a large-scale shell model calculation the exclusive cross
sections are in nice agreement with the experimental values for both reactions.
The inclusive cross section for coming from the decay-in-flight of
is to be compared to the experimental value
of , while the one due to
coming from the decay-at-rest of is which
agrees within experimental error bars with the measured values. The shell model
prediction for the decay-in-flight neutrino cross section is reduced compared
to the RPA one. This is mainly due to the different kind of correlations taken
into account in the calculation of the spin modes and partially due to the
shell-model configuration basis which is not large enough, as we show using
arguments based on sum-rules.Comment: 17 pages, latex, 5 figure
Nuclear model effects in Charged Current neutrino--nucleus quasielastic scattering
The quasielastic scattering of muon neutrinos on oxygen 16 is studied for
neutrino energies between 200 MeV and 1 GeV using a relativistic shell model.
Final state interactions are included within the distorted wave impulse
approximation, by means of a relativistic optical potential, with and without
imaginary part, and of a relativistic mean field potential. For comparison with
experimental data the inclusive charged--current quasielastic cross section for
-- scattering in the kinematical conditions of the LSND
experiment at Los Alamos is also presented and briefly discussed.Comment: 4 pages, 5 figures, two-column format. Accepted as brief report in
Phys. Rev.
Neutrino-induced neutron spallation and supernova r-process nucleosynthesis
In order to explore the consequences of the neutrino irradiation for the
supernova r-process nucleosynthesis, we calculate the rates of charged-current
and neutral-current neutrino reactions on neutron-rich heavy nuclei, and
estimate the average number of neutrons emitted in the resulting spallation.
Our results suggest that charged-current captures can be important in
breaking through the waiting-point nuclei at N=50 and 82, while still allowing
the formation of abundance peaks. Furthermore, after the r-process freezes out,
there appear to be distinctive neutral-current and charged-current
postprocessing effects. A subtraction of the neutrino postprocessing effects
from the observed solar r-process abundance distribution shows that two mass
regions, A=124-126 and 183-187, are inordinately sensitive to neutrino
postprocessing effects. This imposes very stringent bounds on the freeze-out
radii and dynamic timescales governing the r-process. Moreover, we find that
the abundance patterns within these mass windows are entirely consistent with
synthesis by neutrino interactions. This provides a strong argument that the
r-process must occur in the intense neutrino flux provided by a core-collapse
supernova.Comment: 34 pages, 4 PostScript figures, RevTe
Adaptation in anaesthesia team coordination in response to a simulated critical event and its relationship to clinical performance
Background Recent studies in anaesthesia and intensive care indicate that a team's ability to adapt its coordination activities to changing situational demands is crucial for effective teamwork and thus, safe patient care. This study addresses the relationship between adaptation of team coordination and markers of clinical performance in response to a critical event, particularly regarding which types of coordination activities are used and which team member engages in those coordination activities. Methods Video recordings of 15 two-person anaesthesia teams (anaesthesia trainee plus anaesthesia nurse) performing a simulated induction of general anaesthesia were coded, using a structured observation system for coordination activities. The simulation involved a critical event—asystole during laryngoscopy. Clinical performance was assessed using two separate reaction times related to the critical event. Results Analyses of variance revealed a significant effect of the critical event on team coordination: after the occurrence of the asystole, team members adapted their coordination activities by spending more time on information management—a specific type of coordination activity (F1,28=15.17, P=0.001). No significant effect was found for task management. The increase in information management was related to faster decisions regarding how to respond to the critical event, but only for trainees and not for nurses. Conclusions Our findings support the claim that adaptation of coordination activities is related to improved team performance in healthcare. Moreover, adaptation and its relationship to team performance were found to vary with regard to type of coordination activities and team membe
What about a beta-beam facility for low energy neutrinos?
A novel method to produce neutrino beams has recently been proposed : the
beta-beams. This method consists in using the beta-decay of boosted radioactive
nuclei to obtain an intense, collimated and pure neutrino beam. Here we propose
to exploit the beta-beam concept to produce neutrino beams of low energy. We
discuss the applications of such a facility as well as its importance for
different domains of physics. We focus, in particular, on neutrino-nucleus
interaction studies of interest for various open issues in astrophysics,
nuclear and particle physics. We suggest possible sites for a low energy
beta-beam facility.Comment: 4 pages, 1 figur
- …
