957 research outputs found

    Magnetically Controlled Exchange Process in an Ultracold Atom-Dimer Mixture

    Full text link
    We report on the observation of an elementary exchange process in an optically trapped ultracold sample of atoms and Feshbach molecules. We can magnetically control the energetic nature of the process and tune it from endoergic to exoergic, enabling the observation of a pronounced threshold behavior. In contrast to relaxation to more deeply bound molecular states, the exchange process does not lead to trap loss. We find excellent agreement between our experimental observations and calculations based on the solutions of three-body Schr\"odinger equation in the adiabatic hyperspherical representation. The high efficiency of the exchange process is explained by the halo character of both the initial and final molecular states.Comment: 4 pages, 4 figure

    Feshbach spectroscopy and analysis of the interaction potentials of ultracold sodium

    Get PDF
    We have studied magnetic Feshbach resonances in an ultracold sample of Na prepared in the absolute hyperfine ground state. We report on the observation of three s-, eight d-, and three g-wave Feshbach resonances, including a more precise determination of two known s-wave resonances, and one s-wave resonance at a magnetic field exceeding 200mT. Using a coupled-channels calculation we have improved the sodium ground-state potentials by taking into account these new experimental data, and derived values for the scattering lengths. In addition, a description of the molecular states leading to the Feshbach resonances in terms of the asymptotic-bound-state model is presented.Comment: 11 pages, 4 figure

    Intestinal epithelial cells: at the interface of the microbiota and mucosal immunity.

    Get PDF
    The intestinal epithelium forms a barrier between the microbiota and the rest of the body. In addition, beyond acting as a physical barrier, the function of intestinal epithelial cells (IECs) in sensing and responding to microbial signals is increasingly appreciated and likely has numerous implications for the vast network of immune cells within and below the intestinal epithelium. IECs also respond to factors produced by immune cells, and these can regulate IEC barrier function, proliferation and differentiation, as well as influence the composition of the microbiota. The mechanisms involved in IEC-microbe-immune interactions, however, are not fully characterized. In this review, we explore the ability of IECs to direct intestinal homeostasis by orchestrating communication between intestinal microbes and mucosal innate and adaptive immune cells during physiological and inflammatory conditions. We focus primarily on the most recent findings and call attention to the numerous remaining unknowns regarding the complex crosstalk between IECs, the microbiota and intestinal immune cells

    Structural phase transitions in multipole traps

    Full text link
    A small number of laser-cooled ions trapped in a linear radiofrequency multipole trap forms a hollow tube structure. We have studied, by means of molecular dynamics simulations, the structural transition from a double ring to a single ring of ions. We show that the single-ring configuration has the advantage to inhibit the thermal transfer from the rf-excited radial components of the motion to the axial component, allowing to reach the Doppler limit temperature along the direction of the trap axis. Once cooled in this particular configuration, the ions experience an angular dependency of the confinement if the local adiabaticity parameter exceeds the empirical limit. Bunching of the ion structures can then be observed and an analytic expression is proposed to take into account for this behaviour

    Daylight: What Makes a Difference

    Get PDF
    Light is necessary for vision; it enables us to sense and perceive our surroundings and in many direct and indirect ways, via eye and skin, affects our physiological and psychological health. The use of light in built environments has comfort, behavioural, economic and environmental consequences. Daylight has many particular benefits including excellent visual performance, permitting good eyesight, effective entrainment of the circadian system as well as a number of acute non-image forming effects and the important role of vitamin D production. Some human responses to daylight seem to be well defined whilst others require more research to be adequately understood. This paper presents an overview of current knowledge on how the characteristics of daylight play a role in fulfilling these and other functions often better than electric lighting as conventionally delivered
    corecore