113 research outputs found

    Microwave Imaging for Diagnostic Application

    Get PDF
    Imaging of the human body makes a significant contribution to the diagnosis and succeeding treatment of diseases. Among the numerous medical imaging methods, microwave imaging (MWI) is an attractive approach for medical applications due to its high potential to produce images of the human body safely with cost-efficiency. A wide range of studies and research has been done with the aim of using the microwave approach for medical applications. The focus of this research is developing MWI algorithms, which is the Huygens Principle (HP) based and to validate the capability of the proposed MWI algorithm to detect skin cancer and bone lesion through phantom measurements. The probability of the HP procedure for skin cancer detection has been investigated through design, and fabrication of a heterogeneous phantom simulating the human forearm having an inclusion mimicking a skin cancer. Ultrawideband (UWB) MWI methods are then applied to the phantom. The S21 parameter measurements are collected in an anechoic chamber environment and processed via HP technique. The tumour is successfully detected after applying appropriate artefact removal procedure. The ability to successfully apply HP to detect and locate a skin cancer type inclusion in a multilayer cylindrical phantom has been verified. The feasibility study of HP-based MWI procedure for bone lesion detection has also been investigated using a dedicated phantom. Validation has been completed through measurements inside the anechoic chamber in the frequency range of 1–3 GHz using one receiving and one transmitting antennas in free space. The identification of the lesion’s presence in different bone layers has been performed on images. The quantification of the obtained images has been performed by introducing parameters such as the resolution and signal-to-clutter ratio (S/C). The impact of different frequencies and bandwidths (in the 1–3 GHz range) in lesion detection has been investigated. The findings showed that the frequency range of 1.5–2.5 GHz offered the best resolution (1.1 cm) and S/C (2.22 on a linear scale). Subtraction between S21 obtained using two slightly displaced transmitting positions has been employed to remove the artefacts; the best artefact removal has been obtained when the spatial displacement was approximately of the same magnitude as the dimension of the lesion. Subsequently, a phantom validation of a low complexity MWI device (based on HP) operating in free space in the 1-6.5 GHz frequency band using two antennas in free space has been applied. Detection has been achieved in both bone fracture lesion and bone marrow lesion scenarios using superimposition of five doublet transmitting positions after applying the rotation subtraction method to remove artefact. A resolution of 5 mm and the S/C (3.35 in linear scale) are achieved which is clearly confirming the advantage of employing multiple transmitting positions on increased detection capability. The finding of this research verifies the dedicated MWI device as a simple, safe and without any X-ray radiation, portable, and low complexity method, which is capable of been successfully used for bone lesion detection. The outcomes of this thesis may pave the way for the construction of a dedicated bone imaging system that in future could be used as a safe diagnostic device even in emergency sites

    A Microwave Imaging Procedure for Lung Lesion Detection: Preliminary Results on Multilayer Phantoms

    Get PDF
    In this work, a feasibility study for lung lesion detection through microwave imaging based on Huygens’ principle (HP) has been performed using multilayer oval shaped phantoms mimicking human torso having a cylindrically shaped inclusion simulating lung lesion. First, validation of the proposed imaging method has been performed through phantom experiments using a dedicated realistic human torso model inside an anechoic chamber, employing a frequency range of 1–5 GHz. Subsequently, the miniaturized torso phantom validation (using both single and double inclusion scenarios) has been accomplished using a microwave imaging (MWI) device, which operates in free space using two antennas in multi-bistatic configuration. The identification of the target’s presence in the lung layer has been achieved on the obtained images after applying both of the following artifact removal procedures: (i) the “rotation subtraction” method using two adjacent transmitting antenna positions, and (ii) the “ideal” artifact removal procedure utilizing the difference between received signals from unhealthy and healthy scenarios. In addition, a quantitative analysis of the obtained images was executed based on the definition of signal to clutter ratio (SCR). The obtained results verify that HP can be utilized successfully to discover the presence and location of the inclusion in the lung-mimicking phantom, achieving an SCR of 9.88 dB

    Free space operating microwave imaging device for bone lesion detection: a phantom investigation

    Get PDF
    In this letter, a phantom validation of a low complexity microwave imaging device operating in free space in the 1-6.5 GHz frequency band is presented. The device, initially constructed for breast cancer detection, measures the scattered signals in a multi-bistatic fashion and employs an imaging procedure based on Huygens principle. Detection has been achieved in both bone fracture lesion and bone marrow lesion scenarios using the superimposition of five doublet transmitting positions, after applying the rotation subtraction artefact removal method. A resolution of 5 mm and a signal to clutter ratio (3.35 in linear scale) are achieved confirming the advantage of employing multiple transmitting positions on increased detection capability

    UWB Microwave Imaging for Inclusions Detection: Methodology for Comparing Artefact Removal Algorithms

    Get PDF
    An investigation is presented on Artefact Removal Methods for Ultra-Wideband (UWB) Microwave Imaging. Simulations have been done representing UWB signals transmitted onto a cylindrical head-mimicking phantom containing an inclusion having dielectric properties imitating an haemorrhagic stroke. The ideal image is constructed by applying a Huygens’ Principle based imaging algorithm to the difference between the electric field outside the cylinder with an inclusion and the electric field outside the same cylinder with no inclusion. Eight different artefact removal methods are then applied, with the inclusion positioned at \u1d70b and −\u1d70b/4 radians, respectively. The ideal image is then used as a reference image to compare the artefact removal methods employing a novel Image Quality Index, calculated using a weighted combination of image quality metrics. The Summed Symmetric Differential method performed very well in our simulations

    Developing Artefact Removal Algorithms to Process Data from a Microwave Imaging Device for Haemorrhagic Stroke Detection

    Get PDF
    In this paper, we present an investigation of different artefact removal methods for ultra-wideband Microwave Imaging (MWI) to evaluate and quantify current methods in a real environment through measurements using an MWI device. The MWI device measures the scattered signals in a multi-bistatic fashion and employs an imaging procedure based on Huygens principle. A simple two-layered phantom mimicking human head tissue is realised, applying a cylindrically shaped inclusion to emulate brain haemorrhage. Detection has been successfully achieved using the superimposition of five transmitter triplet positions, after applying different artefact removal methods, with the inclusion positioned at 0°, 90°, 180°, and 270°. The different artifact removal methods have been proposed for comparison to improve the stroke detection process. To provide a valid comparison between these methods, image quantification metrics are presented. An “ideal/reference” image is used to compare the artefact removal methods. Moreover, the quantification of artefact removal procedures through measurements using MWI device is performed

    Dutch Nao Team: Team description paper: Standard Platform League: German Open 2010

    Get PDF
    This is the debut of the Dutch Nao Team in the Standard Platform League. The team is a recreation of the Dutch Aibo Team, which was active in the predecessor of the SPL (2004-2006). This year participation is mainly intended to gain experience. As basis for the competition the code release of B-Human is used, with two modifications. The first modification is improved kicking behavior to accommodate the new ball. The second modification is two use both Nao camera’s (one for ball control and one for localization)

    3D Huygens Principle based Microwave Imaging through MammoWave Device: Validation through Phantoms.

    Get PDF
    This work focuses on developing a 3D microwave imaging (MWI) algorithm based on the Huygens principle (HP). Specifically, a novel, fast MWI device (MammoWave) has been presented and exploited for its capabilities of extending image reconstruction from 2D to 3D. For this purpose, dedicated phantoms containing 3D structured inclusion have been prepared with mixtures having different dielectric properties. Phantom measurements have been performed at multiple planes along the z-axis by simultaneously changing the transmitter and receiver antenna height via the graphic user interface (GUI) integrated with MammoWave. We have recorded the complex S21 multi-quote data at multiple planes along the z-axis. The complex multidimensional raw data has been processed via an enhanced HP-based image algorithm for 3D image reconstruction. This paper demonstrates the successful detection and 3D visualization of the inclusion with varying dimensions at multiple planes/cross-sections along the z-axis with a dimensional error lower than 7.5%. Moreover, the paper shows successful detection and 3D visualization of the inclusion in a skull-mimicking phantom having a cylindrically shaped inclusion, with the location of the detected inclusion in agreement with the experimental setup. Additionally, the localization of a 3D structured spherical inclusion has been shown in a more complex scenario using a 3-layer cylindrically shaped phantom, along with the corresponding 3D image reconstruction and visualization

    Acylated ghrelin, growth hormone and IGF-1 levels in the cord blood of small for gestational age newborns

    Get PDF
    Background: Ghrelin is a pleiotropic hormone that regulates feeding and energy balance and stimulates growth hormone release. Ghrelin also exerts developmental and organizational effects during prenatal life. Objectives: The aim of this study was to determine ghrelin levels in cord blood of small for gestational age (SGA) infants and its association with GH (growth hormone) and IGF-1 levels (insulin-like growth factor-1). Methods: Cord blood sample was obtained from 31 SGA and 25 appropriate for gestational age (AGA) infants. Acylated ghrelin, GH, and IGF-1 levels were measured by enzyme-linked immunosorbent assay. Results: No significant differences were observed in ghrelin and GH concentrations between SGA and AGA infants. However, IGF-1 levels were significantly lower in SGA infants. Cord blood ghrelin was negatively correlated with the infants' birth weight (r = -0.33, P = 0.013); on the other hand, IGF-1 level was positively correlated with birth weight (r = 0.43, P = 0.002). Conclusions: IGF-1 has the most significant effect on intrauterine growth. Acylated ghrelin is detectable in cord blood and correlated with birth weight, suggesting a role in intrauterine development, but its level is not affected by intrauterine growth retardation. © 2016, Iranian Society of Pediatrics

    A Phantom Investigation to Quantify Huygens Principle Based Microwave Imaging for Bone Lesion Detection

    Get PDF
    This paper demonstrates the outcomes of a feasibility study of a microwave imaging procedure based on the Huygens principle for bone lesion detection. This study has been performed using a dedicated phantom and validated through measurements in the frequency range of 1–3 GHz using one receiving and one transmitting antenna in free space. Specifically, a multilayered bone phantom, which is comprised of cortical bone and bone marrow layers, was fabricated. The identification of the lesion’s presence in different bone layers was performed on images that were derived after processing through Huygens’ principle, the S21 signals measured inside an anechoic chamber in multi-bistatic fashion. The quantification of the obtained images was carried out by introducing parameters such as the resolution and signal-to-clutter ratio (SCR). The impact of different frequencies and bandwidths (in the 1–3 GHz range) in lesion detection was investigated. The findings showed that the frequency range of 1.5–2.5 GHz offered the best resolution (1.1 cm) and SCR (2.22 on a linear scale). Subtraction between S21 obtained using two slightly displaced transmitting positions was employed to remove the artefacts; the best artefact removal was obtained when the spatial displacement was approximately of the same magnitude as the dimension of the lesio
    corecore