103 research outputs found

    Photon cross sections around K absorption edges

    Get PDF

    NLRP3 inflammasome activation by mycobacterial ESAT-6 and dsRNA in intraocular tuberculosis

    Get PDF
    The molecular basis of intraocular tuberculosis (TB) is not well understood. In this study, we investigated the role of two constituents of viable Mycobacterium tuberculosis - Early Secreted Antigenic Target-6 (ESAT-6), and mycobacterial RNA- in inflammasome activation in the retinal pigment epithelium (RPE) - a key site of inflammation in intraocular TB. We found that ESAT-6 induced caspase-1 activation and inflammasome priming in mouse RPE cells, significantly more in wild-type than in Tlr2/3/4/7/9-/-, Myd88-/- and Nlrp3-/- RPE cells. Sub-retinal ESAT-6 injection resulted in greater RPE degeneration in wild-type than Nlrp3-/- mice. In human ocular TB tissue sections, NLRP3 staining was noted in retina as well as RPE. Mycobacterial RNA, specifically its double stranded component, also induced caspase-1 activation, and the double stranded RNA was immunolocalized to human ocular TB sections. Our observations suggest that inflammasome activation in RPE by viable M. tuberculosis could potentially contribute to human intraocular TB

    Natural History of Very Early Onset Inflammatory Bowel Disease in North America: A Retrospective Cohort Study

    Get PDF
    Background: The incidence of very early onset inflammatory bowel disease (VEOIBD) is increasing, yet the phenotype and natural history of VEOIBD are not well described. Methods: We performed a retrospective cohort study of patients diagnosed with VEOIBD (6 years of age and younger) between 2008 and 2013 at 25 North American centers. Eligible patients at each center were randomly selected for chart review. We abstracted data at diagnosis and at 1, 3, and 5 years after diagnosis. We compared the clinical features and outcomes with VEOIBD diagnosed younger than 3 years of age with children diagnosed with VEOIBD at age 3 to 6 years. Results: The study population included 269 children (105 [39%] Crohn\u27s disease, 106 [39%] ulcerative colitis, and 58 [22%] IBD unclassified). The median age of diagnosis was 4.2 years (interquartile range 2.9-5.2). Most (94%) Crohn\u27s disease patients had inflammatory disease behavior (B1). Isolated colitis (L2) was the most common disease location (70% of children diagnosed younger than 3 years vs 43% of children diagnosed 3 years and older; P = 0.10). By the end of follow-up, stricturing/penetrating occurred in 7 (6.6%) children. The risk of any bowel surgery in Crohn\u27s disease was 3% by 1 year, 12% by 3 years, and 15% by 5 years and did not differ by age at diagnosis. Most ulcerative colitis patients had pancolitis (57% of children diagnosed younger than 3 years vs 45% of children diagnosed 3 years and older; P = 0.18). The risk of colectomy in ulcerative colitis/IBD unclassified was 0% by 1 year, 3% by 3 years, and 14% by 5 years and did not differ by age of diagnosis. Conclusions: Very early onset inflammatory bowel disease has a distinct phenotype with predominantly colonic involvement and infrequent stricturing/penetrating disease. The cumulative risk of bowel surgery in children with VEOIBD was approximately 14%-15% by 5 years. These data can be used to provide anticipatory guidance in this emerging patient population

    Biologics Delay Progression of Crohn's Disease, but Not Early Surgery, in Children

    Get PDF
    Background & Aims: Up to 30% of patients with Crohn's disease (CD) require surgery within the first 5 years from diagnosis. We investigated the recent risk of bowel surgery in an inception cohort of pediatric patients with CD and whether early use of biologics (tumor necrosis factor antagonists) alters later disease course. Methods: We collected data from the Pediatric Inflammatory Bowel Disease Collaborative Research Group registry on 1442 children (age, ó16 y) diagnosed with CD from January 2002 through December 2014. Data were collected at diagnosis, 30 days following diagnosis, and then quarterly and during hospitalizations for up to 12 years. Our primary aim was to determine the 10-year risk for surgery in children with CD. Our secondary aim was to determine whether early use of biologics (<3 mo of diagnosis) affected risk of disease progression. Results: The 10-year risk of first bowel surgery was 26%. The 5-year risk of bowel surgery did not change from 2002 through 2014, and remained between 13% and 14%. Most surgeries occurred within 3 years from diagnosis. The only predictor of surgery was disease behavior at diagnosis. CD with inflammatory behavior had the lowest risk of surgery compared to stricturing disease, penetrating disease, or both. We associated slowing of disease progression to stricturing or penetrating disease (but not surgery) with early use of biologics, but this effect only became evident after 5 years of disease. Our results indicate that biologics slow disease progression over time (hazard ratio, 0.85; 95% CI, 0.76?0.95). Conclusions: In an analysis of data from a registry of pediatric patients with CD, we found that among those with significant and progressing disease at or shortly after presentation, early surgery is difficult to prevent, even with early use of biologics. Early use of biologics (<3 mo of diagnosis) can delay later disease progression to stricturing and/or penetrating disease, but this affect could become evident only years after initial management decisions are made

    The Intracellular DNA Sensor IFI16 Gene Acts as Restriction Factor for Human Cytomegalovirus Replication

    Get PDF
    Human interferon (IFN)-inducible IFI16 protein, an innate immune sensor of intracellular DNA, modulates various cell functions, however, its role in regulating virus growth remains unresolved. Here, we adopt two approaches to investigate whether IFI16 exerts pro- and/or anti-viral actions. First, the IFI16 gene was silenced using specific small interfering RNAs (siRNA) in human embryo lung fibroblasts (HELF) and replication of DNA and RNA viruses evaluated. IFI16-knockdown resulted in enhanced replication of Herpesviruses, in particular, Human Cytomegalovirus (HCMV). Consistent with this, HELF transduction with a dominant negative form of IFI16 lacking the PYRIN domain (PYD) enhanced the replication of HCMV. Second, HCMV replication was compared between HELFs overexpressing either the IFI16 gene or the LacZ gene. IFI16 overexpression decreased both virus yield and viral DNA copy number. Early and late, but not immediate-early, mRNAs and proteins were strongly down-regulated, thus IFI16 may exert its antiviral effect by impairing viral DNA synthesis. Constructs with the luciferase reporter gene driven by deleted or site-specific mutated forms of the HCMV DNA polymerase (UL54) promoter demonstrated that the inverted repeat element 1 (IR-1), located between −54 and −43 relative to the transcription start site, is the target of IFI16 suppression. Indeed, electrophoretic mobility shift assays and chromatin immunoprecipitation demonstrated that suppression of the UL54 promoter is mediated by IFI16-induced blocking of Sp1-like factors. Consistent with these results, deletion of the putative Sp1 responsive element from the HCMV UL44 promoter also relieved IFI16 suppression. Together, these data implicate IFI16 as a novel restriction factor against HCMV replication and provide new insight into the physiological functions of the IFN-inducible gene IFI16 as a viral restriction factor

    UNC93B1 Mediates Innate Inflammation and Antiviral Defense in the Liver during Acute Murine Cytomegalovirus Infection

    Get PDF
    Antiviral defense in the liver during acute infection with the hepatotropic virus murine cytomegalovirus (MCMV) involves complex cytokine and cellular interactions. However, the mechanism of viral sensing in the liver that promotes these cytokine and cellular responses has remained unclear. Studies here were undertaken to investigate the role of nucleic acid-sensing Toll-like receptors (TLRs) in initiating antiviral immunity in the liver during infection with MCMV. We examined the host response of UNC93B1 mutant mice, which do not signal properly through TLR3, TLR7 and TLR9, to acute MCMV infection to determine whether liver antiviral defense depends on signaling through these molecules. Infection of UNC93B1 mutant mice revealed reduced production of systemic and liver proinflammatory cytokines including IFN-α, IFN-γ, IL-12 and TNF-α when compared to wild-type. UNC93B1 deficiency also contributed to a transient hepatitis later in acute infection, evidenced by augmented liver pathology and elevated systemic alanine aminotransferase levels. Moreover, viral clearance was impaired in UNC93B1 mutant mice, despite intact virus-specific CD8+ T cell responses in the liver. Altogether, these results suggest a combined role for nucleic acid-sensing TLRs in promoting early liver antiviral defense during MCMV infection

    Doyne lecture 2016:intraocular health and the many faces of inflammation

    Get PDF
    Dogma for reasons of immune privilege including sequestration (sic) of ocular antigen, lack of lymphatic and immune competent cells in the vital tissues of the eye has long evaporated. Maintaining tissue and cellular health to preserve vision requires active immune responses to prevent damage and respond to danger. A priori the eye must contain immune competent cells, undergo immune surveillance to ensure homoeostasis as well as an ability to promote inflammation. By interrogating immune responses in non-infectious uveitis and compare with age-related macular degeneration (AMD), new concepts of intraocular immune health emerge. The role of macrophage polarisation in the two disorders is a tractable start. TNF-alpha regulation of macrophage responses in uveitis has a pivotal role, supported via experimental evidence and validated by recent trial data. Contrast this with the slow, insidious degeneration in atrophic AMD or in neovasular AMD, with the compelling genetic association with innate immunity and complement, highlights an ability to attenuate pathogenic immune responses and despite known inflammasome activation. Yolk sac-derived microglia maintains tissue immune health. The result of immune cell activation is environmentally dependent, for example, on retinal cell bioenergetics status, autophagy and oxidative stress, and alterations that skew interaction between macrophages and retinal pigment epithelium (RPE). For example, dead RPE eliciting macrophage VEGF secretion but exogenous IL-4 liberates an anti-angiogenic macrophage sFLT-1 response. Impaired autophagy or oxidative stress drives inflammasome activation, increases cytotoxicity, and accentuation of neovascular responses, yet exogenous inflammasome-derived cytokines, such as IL-18 and IL-33, attenuate responses

    Regulating STING in health and disease.

    Get PDF
    The presence of cytosolic double-stranded DNA molecules can trigger multiple innate immune signalling pathways which converge on the activation of an ER-resident innate immune adaptor named "STimulator of INterferon Genes (STING)". STING has been found to mediate type I interferon response downstream of cyclic dinucleotides and a number of DNA and RNA inducing signalling pathway. In addition to its physiological function, a rapidly increasing body of literature highlights the role for STING in human disease where variants of the STING proteins, as well as dysregulated STING signalling, have been implicated in a number of inflammatory diseases. This review will summarise the recent structural and functional findings of STING, and discuss how STING research has promoted the development of novel therapeutic approaches and experimental tools to improve treatment of tumour and autoimmune diseases

    Molecular mechanisms and cellular functions of cGAS-STING signalling

    Get PDF
    The cGAS–STING signalling axis, comprising the synthase for the second messenger cyclic GMP–AMP (cGAS) and the cyclic GMP–AMP receptor stimulator of interferon genes (STING), detects pathogenic DNA to trigger an innate immune reaction involving a strong type I interferon response against microbial infections. Notably however, besides sensing microbial DNA, the DNA sensor cGAS can also be activated by endogenous DNA, including extranuclear chromatin resulting from genotoxic stress and DNA released from mitochondria, placing cGAS–STING as an important axis in autoimmunity, sterile inflammatory responses and cellular senescence. Initial models assumed that co-localization of cGAS and DNA in the cytosol defines the specificity of the pathway for non-self, but recent work revealed that cGAS is also present in the nucleus and at the plasma membrane, and such subcellular compartmentalization was linked to signalling specificity of cGAS. Further confounding the simple view of cGAS–STING signalling as a response mechanism to infectious agents, both cGAS and STING were shown to have additional functions, independent of interferon response. These involve non-catalytic roles of cGAS in regulating DNA repair and signalling via STING to NF-κB and MAPK as well as STING-mediated induction of autophagy and lysosome- dependent cell death. We have also learnt that cGAS dimers can multimerize and undergo liquid–liquid phase separation to form biomolecular condensates that could importantly regulate cGAS activation. Here, we review the molecular mechanisms and cellular functions underlying cGAS–STING activation and signalling, particularly highlighting the newly emerging diversity of this signalling pathway and discussing how the specificity towards normal, damage-induced and infection-associated DNA could be achieved
    corecore