8,415 research outputs found

    Negative Cell Cycle Regulation and DNA Damage-inducible Phosphorylation of the BRCT Protein 53BP1

    Get PDF
    In a screen designed to discover suppressors of mitotic catastrophe, we identified the Xenopus ortholog of 53BP1 (X53BP1), a BRCT protein previously identified in humans through its ability to bind the p53 tumor suppressor. X53BP1 transcripts are highly expressed in ovaries, and the protein interacts with Xp53 throughout the cell cycle in embryonic extracts. However, no interaction between X53BP1 and Xp53 can be detected in somatic cells, suggesting that the association between the two proteins may be developmentally regulated. X53BP1 is modified via phosphorylation in a DNA damage-dependent manner that correlates with the dispersal of X53BP1 into multiple foci throughout the nucleus in somatic cells. Thus, X53BP1 can be classified as a novel participant in the DNA damage response pathway. We demonstrate that X53BP1 and its human ortholog can serve as good substrates in vitro as well as in vivo for the ATM kinase. Collectively, our results reveal that 53BP1 plays an important role in the checkpoint response to DNA damage, possibly in collaboration with ATM

    Lower bounds on concurrence and separability conditions

    Get PDF
    We obtain analytical lower bounds on the concurrence of bipartite quantum systems in arbitrary dimensions related to the violation of separability conditions based on local uncertainty relations and on the Bloch representation of density matrices. We also illustrate how these results complement and improve those recently derived [K. Chen, S. Albeverio, and S.-M. Fei, Phys. Rev. Lett. 95, 040504 (2005)] by considering the Peres-Horodecki and the computable cross norm or realignment criteria.Comment: 5 pages, 1 figure; minor changes, references added; final version: minor correction in proof of lemma 1, scope of theorem 2 clarified, to appear in PRA; mistake in proof of lemma 1 of published version corrected, results unchange

    Exact Hairy Black Holes and their Modification to the Universal Law of Gravitation

    Full text link
    In this paper two things are done. First, it is pointed out the existence of exact asymptotically flat, spherically symmetric black holes when a self interacting, minimally coupled scalar field is the source of the energy momentum of the Einstein equations in four dimensions. The scalar field potential is the recently found to be compatible with the hairy generalization of the Plebanski-Demianski solution of general relativity. This paper describes the spherically symmetric solutions that smoothly connect the Schwarzschild black hole with its hairy counterpart. The geometry and scalar field are everywhere regular except at the usual Schwarzschild like singularity inside the black hole. The scalar field energy momentum tensor satisfies the null energy condition in the static region of the spacetime. The first law holds when the parameters of the scalar field potential are fixed under thermodynamical variation. Secondly, it is shown that an extra, dimensionless parameter, present in the hairy solution, allows to modify the gravitational field of a spherically symmetric black hole in a remarkable way. When the dimensionless parameter is increased, the scalar field generates a flat gravitational potential, that however asymptotically matches the Schwarzschild gravitational field. Finally, it is shown that a positive cosmological constant can render the scalar field potential convex if the parameters are within a specific rank.Comment: Two new references, 10 pages, 2 figure

    A MegaCam Survey of Outer Halo Satellites. VII. A Single S\'ersic Index v/s Effective Radius Relation for Milky Way Outer Halo Satellites

    Full text link
    In this work we use structural properties of Milky Way's outer halo (RG>25kpcR_G > 25\,\mathrm{kpc}) satellites (dwarf spheroidal galaxies, ultra-faint dwarf galaxies and globular clusters) derived from deep, wide-field and homogeneous data, to present evidence of a correlation in the S\'ersic index v/s effective radius plane followed by a large fraction of outer halo globular clusters and satellite dwarf galaxies. We show that this correlation can be entirely reproduced by fitting empirical relations in the central surface brightness v/s absolute magnitude and S\'ersic index v/s absolute magnitude parameter spaces, and by assuming the existence of two types of outer halo globular clusters: one of high surface brightness (HSB group), with properties similar to inner halo clusters; and another of low surface brightness (LSB group), which share characteristics with dwarf spheroidal and ultra-faint dwarf galaxies. Given the similarities of LSB clusters with dwarf spheroidal and ultra-faint dwarf galaxies, we discuss the possibility that outer halo clusters also originated inside dark matter halos and that tidal forces from different galaxy host's potentials are responsible for the different properties between HSB and LSB clusters.Comment: 20 pages, 9 figures, 3 table
    corecore