5,014 research outputs found

    Measurements of fluctuating pressure in a rectangular cavity in transonic flow at high Reynolds numbers

    Get PDF
    An experiment was performed in the Langley 0.3 meter Transonic Cryogenic Tunnel to study the internal acoustic field generated by rectangular cavities in transonic and subsonic flows and to determine the effect of Reynolds number and angle of yaw on the field. The cavity was 11.25 in. long and 2.50 in. wide. The cavity depth was varied to obtain length-to-height (l/h) ratios of 4.40, 6.70, 12.67, and 20.00. Data were obtained for a free stream Mach number range from 0.20 to 0.90, a Reynolds number range from 2 x 10(exp 6) to 100 x 10(exp 6) per foot with a nearly constant boundary layer thickness, and for two angles of yaw of 0 and 15 degs. Results show that Reynolds number has little effect on the acoustic field in rectangular cavities at angle of yaw of 0 deg. Cavities with l/h = 4.40 and 6.70 generated tones at transonic speeds, whereas those with l/h = 20.00 did not. This trend agrees with data obtained previously at supersonic speeds. As Mach number decreased, the amplitude, and bandwidth of the tones changed. No tones appeared for Mach number = 0.20. For a cavity with l/h = 12.67, tones appeared at Mach number = 0.60, indicating a possible change in flow field type. Changes in acoustic spectra with angle of yaw varied with Reynolds number, Mach number, l/h ratios, and acoustic mode number

    Effective non-additive pair potential for lock-and-key interacting particles: the role of the limited valence

    Full text link
    Theoretical studies of self-assembly processes and condensed phases in colloidal systems are often based on effective inter-particle potentials. Here we show that developing an effective potential for particles interacting with a limited number of ``lock-and-key'' selective bonds (due to the specificity of bio-molecular interactions) requires -- beside the non-sphericity of the potential -- a (many body) constraint that prevent multiple bonding on the same site. We show the importance of retaining both valence and bond-selectivity by developing, as a case study, a simple effective potential describing the interaction between colloidal particles coated by four single-strand DNA chains.Comment: 4 pages, 5 figure

    Negative Cell Cycle Regulation and DNA Damage-inducible Phosphorylation of the BRCT Protein 53BP1

    Get PDF
    In a screen designed to discover suppressors of mitotic catastrophe, we identified the Xenopus ortholog of 53BP1 (X53BP1), a BRCT protein previously identified in humans through its ability to bind the p53 tumor suppressor. X53BP1 transcripts are highly expressed in ovaries, and the protein interacts with Xp53 throughout the cell cycle in embryonic extracts. However, no interaction between X53BP1 and Xp53 can be detected in somatic cells, suggesting that the association between the two proteins may be developmentally regulated. X53BP1 is modified via phosphorylation in a DNA damage-dependent manner that correlates with the dispersal of X53BP1 into multiple foci throughout the nucleus in somatic cells. Thus, X53BP1 can be classified as a novel participant in the DNA damage response pathway. We demonstrate that X53BP1 and its human ortholog can serve as good substrates in vitro as well as in vivo for the ATM kinase. Collectively, our results reveal that 53BP1 plays an important role in the checkpoint response to DNA damage, possibly in collaboration with ATM
    • …
    corecore