75 research outputs found

    Translation correlations in anisotropically scattering media

    Get PDF
    Controlling light propagation across scattering media by wavefront shaping holds great promise for a wide range of communications and imaging applications. However, finding the right wavefront to shape is a challenge when the mapping between input and output scattered wavefronts (i.e. the transmission matrix) is not known. Correlations in transmission matrices, especially the so-called memory-effect, have been exploited to address this limitation. However, the traditional memory-effect applies to thin scattering layers at a distance from the target, which precludes its use within thick scattering media, such as fog and biological tissue. Here, we theoretically predict and experimentally verify new transmission matrix correlations within thick anisotropically scattering media, with important implications for biomedical imaging and adaptive optics.Comment: main article (18 pages) and appendices (6 pages

    Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics

    Get PDF
    Digital micro-mirror devices (DMDs) have recently emerged as practical spatial light modulators (SLMs) for applications in photonics, primarily due to their modulation rates, which exceed by several orders of magnitude those of the already well-established nematic liquid crystal (LC)-based SLMs. This, however, comes at the expense of limited modulation depth and diffraction efficiency. Here we compare the beam-shaping fidelity of both technologies when applied to light control in complex environments, including an aberrated optical system, a highly scattering layer and a multimode optical fibre. We show that, despite their binary amplitude-only modulation, DMDs are capable of higher beam-shaping fidelity compared to LC-SLMs in all considered regime

    Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media

    Get PDF
    The ability to steer and focus light inside scattering media has long been sought for a multitude of applications. At present, the only feasible strategy to form optical foci inside scattering media is to guide photons by using either implanted or virtual guide stars, which can be inconvenient and limits the potential applications. Here we report a scheme for focusing light inside scattering media by employing intrinsic dynamics as guide stars. By adaptively time-reversing the perturbed component of the scattered light, we show that it is possible to focus light to the origin of the perturbation. Using this approach, we demonstrate non-invasive dynamic light focusing onto moving targets and imaging of a time-variant object obscured by highly scattering media. Anticipated applications include imaging and photoablation of angiogenic vessels in tumours, as well as other biomedical uses

    Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)

    Get PDF
    Focusing of light in the diffusive regime inside scattering media has long been considered impossible. Recently, this limitation has been overcome with time reversal of ultrasound-encoded light (TRUE), but the resolution of this approach is fundamentally limited by the large number of optical modes within the ultrasound focus. Here, we introduce a new approach, time reversal of variance-encoded light (TROVE), which demixes these spatial modes by variance encoding to break the resolution barrier imposed by the ultrasound. By encoding individual spatial modes inside the scattering sample with unique variances, we effectively uncouple the system resolution from the size of the ultrasound focus. This enables us to demonstrate optical focusing and imaging with diffuse light at an unprecedented, speckle-scale lateral resolution of ~5 µm

    High-Throughput Single-Cell Manipulation in Brain Tissue

    Get PDF
    The complexity of neurons and neuronal circuits in brain tissue requires the genetic manipulation, labeling, and tracking of single cells. However, current methods for manipulating cells in brain tissue are limited to either bulk techniques, lacking single-cell accuracy, or manual methods that provide single-cell accuracy but at significantly lower throughputs and repeatability. Here, we demonstrate high-throughput, efficient, reliable, and combinatorial delivery of multiple genetic vectors and reagents into targeted cells within the same tissue sample with single-cell accuracy. Our system automatically loads nanoliter-scale volumes of reagents into a micropipette from multiwell plates, targets and transfects single cells in brain tissues using a robust electroporation technique, and finally preps the micropipette by automated cleaning for repeating the transfection cycle. We demonstrate multi-colored labeling of adjacent cells, both in organotypic and acute slices, and transfection of plasmids encoding different protein isoforms into neurons within the same brain tissue for analysis of their effects on linear dendritic spine density. Our platform could also be used to rapidly deliver, both ex vivo and in vivo, a variety of genetic vectors, including optogenetic and cell-type specific agents, as well as fast-acting reagents such as labeling dyes, calcium sensors, and voltage sensors to manipulate and track neuronal circuit activity at single-cell resolution

    Optical and molecular techniques for the study of neuronal networks

    No full text
    A central goal of systems neuroscience is to understand how brain function can be explained by the activity of intricate neuronal circuits. A major hurdle towards addressing this question has been the lack of appropriate techniques to specifically manipulate individual neurons within functioning networks and to measure their connectivity at single cell resolution. Here I present a new technique, two-photon guided single-cell electroporation, to perform genetic manipulations of individual neurons in the intact mammalian brain in vivo. I demonstrate how stable transgene expression can reliably be induced with high success rates both in single neurons as well as in spatially defined groups of neurons in the cerebral cortex of mice. Furthermore, I demonstrate how single-cell electroporation can be used in combination with retrograde viral tracing techniques to label the microcircuit impinging on a single postsynaptic target neuron. Using this approach, I present the first data of monosynaptic neuronal tracing at single-cell resolution in intact networks in vivo. These complementary techniques will provide researchers with a new approach to manipulate the function of single neurons within intact networks and to link the function of a neuronal network to the underlying circuitry

    Analysis of functional connectivity in the zebrafish olfactory bulb

    No full text

    Deep-tissue fluorescence imaging using ultrasound-encoded digitally time-reversed light

    No full text
    Biological tissues significantly scatter light, preventing fluorescence imaging beyond 1 mm deep. By digitally time-reversing ultrasound-encoded light, we achieve high resolution fluorescence imaging at an unprecedented depth of 2.5 mm in scattering biological tissues. © OSA 2012

    Secure Storage of Cryptographic Keys within Random Volumetric Materials

    No full text
    We present a device to optically access gigabits of random keys stored within an object’s microscopic randomness. We demonstrate how this device may allow two parties to securely communicate without digitally saving any sensitive information
    corecore