319 research outputs found

    Discontinuous Phase Transition in an Exactly Solvable One-Dimensional Creation-Annihilation System

    Full text link
    An exactly solvable reaction-diffusion model consisting of first-class particles in the presence of a single second-class particle is introduced on a one-dimensional lattice with periodic boundary condition. The number of first-class particles can be changed due to creation and annihilation reactions. It is shown that the system undergoes a discontinuous phase transition in contrast to the case where the density of the second-class particles is finite and the phase transition is continuous.Comment: Revised, 8 pages, 1 EPS figure. Accepted for publication in Journal of Statistical Mechanics: theory and experimen

    Phase Transition in a Three-States Reaction-Diffusion System

    Full text link
    A one-dimensional reaction-diffusion model consisting of two species of particles and vacancies on a ring is introduced. The number of particles in one species is conserved while in the other species it can fluctuate because of creation and annihilation of particles. It has been shown that the model undergoes a continuous phase transition from a phase where the currents of different species of particles are equal to another phase in which they are different. The total density of particles and also their currents in each phase are calculated exactly.Comment: 6 page

    Exact Solution of an Exclusion Model in the Presence of a moving Impurity

    Full text link
    We study a recently introduced model which consists of positive and negative particles on a ring. The positive (negative) particles hop clockwise (counter-clockwise) with rate 1 and oppositely charged particles may swap their positions with asymmetric rates q and 1. In this paper we assume that a finite density of positively charged particles ρ\rho and only one negative particle (which plays the role of an impurity) exist on the ring. It turns out that the canonical partition function of this model can be calculated exactly using Matrix Product Ansatz (MPA) formalism. In the limit of infinite system size and infinite number of positive particles, we can also derive exact expressions for the speed of the positive and negative particles which show a second order phase transition at qc=2ρq_c=2\rho. The density profile of the positive particles on the ring has a shock structure for qqcq \leq q_c and an exponential behaviour with correlation length ξ\xi for qqcq \geq q_c. It will be shown that the mean-field results become exact at q=3 and no phase transition occurs for q>2.Comment: 9 pages,4 EPS figures. To be appear in JP

    First Order Phase Transition in a Reaction-Diffusion Model With Open Boundary: The Yang-Lee Theory Approach

    Full text link
    A coagulation-decoagulation model is introduced on a chain of length L with open boundary. The model consists of one species of particles which diffuse, coagulate and decoagulate preferentially in the leftward direction. They are also injected and extracted from the left boundary with different rates. We will show that on a specific plane in the space of parameters, the steady state weights can be calculated exactly using a matrix product method. The model exhibits a first-order phase transition between a low-density and a high-density phase. The density profile of the particles in each phase is obtained both analytically and using the Monte Carlo Simulation. The two-point density-density correlation function in each phase has also been calculated. By applying the Yang-Lee theory we can predict the same phase diagram for the model. This model is further evidence for the applicability of the Yang-Lee theory in the non-equilibrium statistical mechanics context.Comment: 10 Pages, 3 Figures, To appear in Journal of Physics A: Mathematical and Genera

    The Study of Shocks in Three-States Driven-Diffusive Systems: A Matrix Product Approach

    Full text link
    We study the shock structures in three-states one-dimensional driven-diffusive systems with nearest neighbors interactions using a matrix product formalism. We consider the cases in which the stationary probability distribution function of the system can be written in terms of superposition of product shock measures. We show that only three families of three-states systems have this property. In each case the shock performs a random walk provided that some constraints are fulfilled. We calculate the diffusion coefficient and drift velocity of shock for each family.Comment: 15 pages, Accepted for publication in Journal of Statistical Mechanics: Theory and Experiment (JSTAT

    Equivalence of a one-dimensional driven-diffusive system and an equilibrium two-dimensional walk model

    Full text link
    It is known that a single product shock measure in some of one-dimensional driven-diffusive systems with nearest-neighbor interactions might evolve in time quite similar to a random walker moving on a one-dimensional lattice with reflecting boundaries. The non-equilibrium steady-state of the system in this case can be written in terms of a linear superposition of such uncorrelated shocks. Equivalently, one can write the steady-state of this system using a matrix-product approach with two-dimensional matrices. In this paper we introduce an equilibrium two-dimensional one-transit walk model and find its partition function using a transfer matrix method. We will show that there is a direct connection between the partition functions of these two systems. We will explicitly show that in the steady-state the transfer matrix of the one-transit walk model is related to the matrix representation of the algebra of the driven-diffusive model through a similarity transformation. The physical quantities are also related through the same transformation.Comment: 5 pages, 2 figures, Revte

    Identification of Turnip mosaic virus isolated from canola in northeast area of Iran

    Get PDF
    During March and April of 2011, 436 samples showing viral disease symptoms were collected from canola fields in the Khorasan Razavi province. The samples were tested by double-antibody sandwich (DAS)-enzyme linked immunosorbent assay (ELISA) for the presence of Turnip mosaic virus (TuMV). Among the 436 samples, 117 samples were found to be infected with TuMV. One of the infected samples from Govareshk region (TuMV-IRN GSK) was selected for biological purification. Total RNA of this isolate were extracted and reverse transcriptase (RT)-PCR was performed with specific primers according to the coat protein gene. PCR products (986 bp) was first purified and then directly sequenced. Phylogenetic analyses based on ClustalW multiple alignments with previously reported 33 isolates indicated 88 to 98% similarity in nucleotide and 94 to 99% in amino acid levels among isolates. TuMV-IRN GSK represented the highest identity to another Iranian isolate (IRN TRa6). Phylogenetic tree clustered all sequences into four groups and IRN GSK fell into the basal-B group. Nucleotide and amino acid distances between IRN GSK and other isolates in the basal-B group showed that this isolate was closely related to another Iranian isolate IRN TRa6, and distinct from other isolates in the basal-B group. These results indicate that TuMV is a common pathogen of canola crops in the Khorasan Razavi province.Key words: Turnip mosaic virus (TuMV), canola, reverse-transcription polymerase chain reaction (RT-PCR), coat protein gene, sequence analysis

    One-transit paths and steady-state of a non-equilibrium process in a discrete-time update

    Full text link
    We have shown that the partition function of the Asymmetric Simple Exclusion Process with open boundaries in a sublattice-parallel updating scheme is equal to that of a two-dimensional one-transit walk model defined on a diagonally rotated square lattice. It has been also shown that the physical quantities defined in these systems are related through a similarity transformation.Comment: 8 pages, 2 figure

    Exact Shock Profile for the ASEP with Sublattice-Parallel Update

    Full text link
    We analytically study the one-dimensional Asymmetric Simple Exclusion Process (ASEP) with open boundaries under sublattice-parallel updating scheme. We investigate the stationary state properties of this model conditioned on finding a given particle number in the system. Recent numerical investigations have shown that the model possesses three different phases in this case. Using a matrix product method we calculate both exact canonical partition function and also density profiles of the particles in each phase. Application of the Yang-Lee theory reveals that the model undergoes two second-order phase transitions at critical points. These results confirm the correctness of our previous numerical studies.Comment: 12 pages, 3 figures, accepted for publication in Journal of Physics
    corecore