An exactly solvable reaction-diffusion model consisting of first-class
particles in the presence of a single second-class particle is introduced on a
one-dimensional lattice with periodic boundary condition. The number of
first-class particles can be changed due to creation and annihilation
reactions. It is shown that the system undergoes a discontinuous phase
transition in contrast to the case where the density of the second-class
particles is finite and the phase transition is continuous.Comment: Revised, 8 pages, 1 EPS figure. Accepted for publication in Journal
of Statistical Mechanics: theory and experimen