18 research outputs found

    Investigation on the possibility of obtaining of motor fuels from bituminous sand by heat treatment

    Get PDF
    DOI: http://dx.doi.org/10.5564/mjc.v12i0.182 Mongolian Journal of Chemistry Vol.12 2011: 102-10

    Identification of Flexural Rigidity in a Kirchhoff Plates Model Using a Convex Objective and Continuous Newton Method

    Get PDF
    This work provides a detailed theoretical and numerical study of the inverse problem of identifying flexural rigidity in Kirchhoff plate models. From a mathematical standpoint, this inverse problem requires estimating a variable coefficient in a fourth-order boundary value problem.This inverse problem and related estimation problems associated with general plates and shellmodels have been investigated by numerous researchers through an optimization framework using the output least-squares (OLSs) formulation. OLS yields a nonconvex framework and hence it is suitable for investigating only the local behavior of the solution. In this work, we propose a new convex framework for the inverse problem of identifying a variable parameter in a fourth-order inverse problem. Existence results, optimality conditions, and discretization issues are discussed in detail. The discrete inverse problem is solved by using a continuous Newton method. Numerical results show the feasibility of the proposed framework

    Error estimates for a finite element discretization of a phase field model for mixtures

    No full text
    We derive error estimates for finite element discretizations of phase field models that describe phase transitions in nonisothermal mixtures. Special attention is paid to the applicability of the result for a large class of models with nonlinear constitutive relations and to an approach that avoids an exponential dependence of the constants in the error estimate on the approximation parameter that models the thickness of the diffuse phase transition region. The main assumptions on the model are a convexity condition for a function that can be interpreted as the negative local part of the entropy of the system, a suitable regularity of the exact solutions, and a spectrum estimate for the operator of the Allen-Cahn equation. The spectrum estimate is crucial to avoid the exponential dependence of error constants on the approximation parameters in the model. This is done by a technique introduced in [X. Feng and A. Prohl, Math. Comp., 73 (2004), pp. 541-567] for phase transitions of pure materials with linear constitutive relations. © 2010 Society for Industrial and Applied Mathematics
    corecore