30,838 research outputs found
Object Database Scalability for Scientific Workloads
We describe the PetaByte-scale computing challenges posed by the next generation of particle physics experiments, due to start operation in 2005. The computing models adopted by the experiments call for systems capable of handling sustained data acquisition rates of at least 100 MBytes/second into an Object Database, which will have to handle several PetaBytes of accumulated data per year. The systems will be used to schedule CPU intensive reconstruction and analysis tasks on the highly complex physics Object data which need then be served to clients located at universities and laboratories worldwide. We report on measurements with a prototype system that makes use of a 256 CPU HP Exemplar X Class machine running the Objectivity/DB database. Our results show excellent scalability for up to 240 simultaneous database clients, and aggregate I/O rates exceeding 150 Mbytes/second, indicating the viability of the computing models
Dissociation dynamics of fluorinated ethene cations:\ud from time bombs on a molecular level to double-regime dissociators\ud
The dissociative photoionization mechanism of internal energy selected CHF, 1,1-CHF, CHF and CF cations have been studied in the 13−20 eV photon energy range using imaging photoelectron photoion coincidence spectroscopy. Five predominant channels have been found; HF loss, statistical and non-statistical F loss, cleavage of the C–C bond post H or F-atom migration, and cleavage of the C=C bond. By modelling the breakdown diagrams and ion time-of-flight distributions using statistical theory, experimental 0 K appearance energies, E, of the daughter ions have been determined. Both CHF and 1,1-CHF are veritable time bombs with respect to dissociation via HF loss, where slow dissociation over a reverse barrier is followed by an explosion with large kinetic energy release. The first dissociative ionization pathway for CHF and CF involves an atom migration across the C=C bond, giving CF–CHF and CF–CF, respectively, which then dissociate to form CHF and CF. The nature of the F-loss pathway has been found to be bimodal for CHF and 1,1-CHF, switching from statistical to non-statistical behaviour as the photon energy increases. The dissociative ionization of CF is found to be comprised of two regimes. At high internal energies, a long-lived excited electronic state is formed, which loses an F atom in a non-statistical process and undergoes statistical redistribution of energy among the nuclear degrees of freedom. This is followed by a subsequent dissociation. In other words only the ground electronic state phase space stays inaccessible. The accurate E of CF and CF formation from CF together with the now well established ∆Hº of CF yield self-consistent enthalpies of formation for the CF, CF, CF, and CF species
Elements of Design for Containers and Solutions in the LinBox Library
We describe in this paper new design techniques used in the \cpp exact linear
algebra library \linbox, intended to make the library safer and easier to use,
while keeping it generic and efficient. First, we review the new simplified
structure for containers, based on our \emph{founding scope allocation} model.
We explain design choices and their impact on coding: unification of our matrix
classes, clearer model for matrices and submatrices, \etc Then we present a
variation of the \emph{strategy} design pattern that is comprised of a
controller--plugin system: the controller (solution) chooses among plug-ins
(algorithms) that always call back the controllers for subtasks. We give
examples using the solution \mul. Finally we present a benchmark architecture
that serves two purposes: Providing the user with easier ways to produce
graphs; Creating a framework for automatically tuning the library and
supporting regression testing.Comment: 8 pages, 4th International Congress on Mathematical Software, Seoul :
Korea, Republic Of (2014
High-Precision Thermodynamics and Hagedorn Density of States
We compute the entropy density of the confined phase of QCD without quarks on
the lattice to very high accuracy. The results are compared to the entropy
density of free glueballs, where we include all the known glueball states below
the two-particle threshold. We find that an excellent, parameter-free
description of the entropy density between 0.7Tc and Tc is obtained by
extending the spectrum with the exponential spectrum of the closed bosonic
string.Comment: 4 pages, 3 figure
Supersymmetric black rings and three-charge supertubes
We present supergravity solutions for 1/8-supersymmetric black supertubes
with three charges and three dipoles. Their reduction to five dimensions yields
supersymmetric black rings with regular horizons and two independent angular
momenta. The general solution contains seven independent parameters and
provides the first example of non-uniqueness of supersymmetric black holes. In
ten dimensions, the solutions can be realized as D1-D5-P black supertubes. We
also present a worldvolume construction of a supertube that exhibits three
dipoles explicitly. This description allows an arbitrary cross-section but
captures only one of the angular momenta.Comment: 59 pages, 6 figures; v2: minor correction
High spatial resolution 100 micron observations of the M83 bar
A program of high spatial resolution far-infrared observations of galaxies using the Kuiper Airborne Observatory (KAO), was conducted to better understand the role of star formation, the general interstellar radiation field, and non-thermal activity in powering the prodigious far-infrared luminosities seen in spiral and interacting galaxies. Here, researchers present observations of the central region of the well-known barred spiral M83 (NGC 5236). The resultant channel 3 scans for M83 and IRC + 10216, after co-addition and smoothing, are shown. These data show that M83 is extended at 100 microns compared to a point source. A simple Gaussian deconvolution of the M83 data with the point source profile from IRC+10216 gives a full width half maximum (FWHM) of about 19 seconds for M83. By comparison with IRC+10216, researchers obtain a flux for the unresolved component in M83 of about 110 Jy. This is about 1/6 the total flux for M83 (Rice et al. 1988) and about 1/2 the PSC flux. The M83 and IRC+10216 profiles in the cross-scan direction (SE-NW) were also compared, and show that M83 is extended in this direction as well, with a width of about 18 seconds. A comparison of the different channel profiles for M83 and IRC+10216 shows that there is an asymmetry in the M83 data, in that the maximum in the profiles shifts from southeast to northwest as channel number increases. This corresponds to the extension in the bar seen in the CO data. Thus the far-infrared emission in the central region of M83 tends to trace the CO bar. The new 100 micron data is also compared with previous H alpha observations from the literature, to determine how well the far-infrared traces the stellar structure, the star formation as measured by H alpha, and the optical colors
Control of supersonic wind-tunnel noise by laminarization of nozzle-wall boundary layer
One of the principal design requirements for a quiet supersonic or hypersonic wind tunnel is to maintain laminar boundary layers on the nozzle walls and thereby reduce disturbance levels in the test flow. The conditions and apparent reasons for laminar boundary layers which have been observed during previous investigations on the walls of several nozzles for exit Mach numbers from 2 to 20 are reviewed. Based on these results, an analysis and an assessment of nozzle design requirements for laminar boundary layers including low Reynolds numbers, high acceleration, suction slots, wall temperature control, wall roughness, and area suction are presented
- …