3,562,287 research outputs found
Relativistic Positioning Systems: The Emission Coordinates
This paper introduces some general properties of the gravitational metric and
the natural basis of vectors and covectors in 4-dimensional emission
coordinates. Emission coordinates are a class of space-time coordinates defined
and generated by 4 emitters (satellites) broadcasting their proper time by
means of electromagnetic signals. They are a constitutive ingredient of the
simplest conceivable relativistic positioning systems. Their study is aimed to
develop a theory of these positioning systems, based on the framework and
concepts of general relativity, as opposed to introducing `relativistic
effects' in a classical framework. In particular, we characterize the causal
character of the coordinate vectors, covectors and 2-planes, which are of an
unusual type. We obtain the inequality conditions for the contravariant metric
to be Lorentzian, and the non-trivial and unexpected identities satisfied by
the angles formed by each pair of natural vectors. We also prove that the
metric can be naturally split in such a way that there appear 2 parameters
(scalar functions) dependent exclusively on the trajectory of the emitters,
hence independent of the time broadcast, and 4 parameters, one for each
emitter, scaling linearly with the time broadcast by the corresponding
satellite, hence independent of the others.Comment: 13 pages, 3 figures. Only format changed for a new submission.
Submitted to Class. Quantum Gra
Underlying symmetries of realistic interactions and the nuclear many-body problem
The present study brings forward important information, within the framework
of spectral distribution theory, about the types of forces that dominate three
realistic interactions, CD-Bonn, CDBonn+ 3terms and GXPF1, in nuclei and their
ability to account for many-particle effects such as the formation of
correlated nucleon pairs and enhanced quadrupole collective modes.
Like-particle and proton-neutron isovector pairing correlations are described
microscopically by a model interaction with Sp(4) dynamical symmetry, which is
extended to include an additional quadrupole-quadrupole interaction. The
analysis of the results for the 1f7/2 level shows that both CD-Bonn+3terms and
GXPF1 exhibit a well-developed pairing character compared to CD-Bonn, while the
latter appears to build up more (less) rotational isovector T = 1 (isoscalar T
= 0) collective features. Furthermore, the three realistic interactions are in
general found to correlate strongly with the pairing+quadrupole model
interaction, especially for the highest possible isospin group of states where
the model interaction can be used to provide a reasonable description of the
corresponding energy spectra.Comment: 12 pages, 4 figure
A Gauge-fixed Hamiltonian for Lattice QCD
We study the gauge fixing of lattice QCD in 2+1 dimensions, in the
Hamiltonian formulation. The technique easily generalizes to other theories and
dimensions. The Hamiltonian is rewritten in terms of variables which are gauge
invariant except under a single global transformation. This paper extends
previous work, involving only pure gauge theories, to include matter fields.Comment: 7 pages of LaTeX, RU-92-45 and BUHEP-92-3
Coupling between membrane tilt-difference and dilation: a new ``ripple'' instability and multiple crystalline inclusions phases
A continuum Landau theory for the micro-elasticity of membranes is discussed,
which incorporates a coupling between the bilayer thickness variation and the
difference in the two monolayers' tilts. This coupling stabilizes a new phase
with a rippled micro-structure. Interactions among membrane inclusions combine
a dilation-induced attraction and a tilt-difference-induced repulsion that
yield 2D crystal phases, with possible coexistence of different lattice
spacings for large couplings. Inclusions favoring crystals are those with
either a long-convex or a short-concave hydrophobic core.Comment: EURO LaTeX, 6 pages, 4 figures, to be published in Europhys. Let
Ray tracing program with options for diffraction gratings
Diffraction theory, developed in vectorial form and coded into ray tracing routines, permits tracing rays of any wavelength through surfaces that are plane, spherical, conical, or aspheric polynomial. Ruled diffraction gratings may run in either X-direction or Y-direction, where Z is optical axis
Transonic divider for gas chromatograph effluents
Transonic effluent divider system was developed which permits varying mass input of gas chromatographic effluent into mass spectrometer without affecting performance of gas chromatograph. Mechanisms of operation are described
Endangered Species Act Innovations in the Post-Babbittonian Era—Are There Any?
One of the mysteries of environmental policy in the Bush Administration will be how and why it squandered an opportunity to continue market-based administrative reforms of the Endangered Species Act begun, ironically, in the Clinton Administration under the direction of then Secretary of the Interior Bruce Babbitt. This article traces the momentum built for reform in the Babbittonian era and examines what has not happened since then
- …
