21 research outputs found

    Applicability of the kp method to modeling of InAs/GaSb short-period superlattices

    Get PDF
    We investigate the long-standing controversy surrounding modeling of the electronic spectra of InAs/GaSb short-period superlattices (SPSLs). Most commonly, such modeling for semiconductor heterostructures is based on the kp method. However, this method has so far failed to predict the band structure for type-II InAs/GaSb SPSLs. Instead, it has systematically overestimated the energy gap between the electron and heavy-hole minibands, which led to the suggestion that the kp method is inadequate for these heterostructures. Our results show that the physical origin of the discrepancy between modeling and experimental results may be the graded and asymmetric InAs/GaSb interface profile. We have performed band-structure modeling within the kp method using a realistic interface profile based on experimental observations. Our calculations show good agreement with experimental data, both from our own measurements and from the published literature. © 2009 The American Physical Society

    Isoelectronic traps in heavily doped GaAs:(In,N)

    No full text
    International audienceGaAs samples doped with low indium and nitrogen contents were investigated by continuous-wave (CWPL) and time-resolved photoluminescence (TRPL) at low temperature (10 K). The simultaneous incorporation of doping amounts of both indium and nitrogen elements in GaAs creates new isoelectronic traps that are not present in indium-free GaAs:N. These traps are built from nitrogen-related defects of GaAs:N now perturbated by one additional indium atom. They are believed to involve a preferential orientation of the In atom and of one N atom in near-neighbor positions. The experiments are consistent with the assumption that the clusters are perturbed by a single In atom but that a definitive assignment cannot be given without addition theoretical modeling. Optical feature characteristics of the exciton bound to these kinds of isoelectronic traps are reported: (i) the exciton fine structure with dipole-forbidden and dipole-allowed states and (ii) the train of phonon replicas that is typical of isoelectronic traps. The observation of the tine structure of the trapped excitons is made possible because of the thermodynamic equilibrium between the two populations of excitons (dipole-allowed and dipole-forbidden states) in the conditions of our measurement. It gives us a direct measurement of the short-range exchange interaction (∼0.7 meV). The TRPL experiments allow us to characterize the exciton recombination dynamics for the different isoelectronic traps and notably the transfer mechanisms of excitons among these various traps

    From GaAs:N to oversaturated GaAsN: Analysis of the band-gap reduction

    No full text
    International audienceThe composition dependence of the band-gap reduction of GaAs1-xNx grown by molecular beam epitaxy and metal organic vapor phase epitaxy was investigated using transmission, reflection, and low-temperature photoluminescence (PL) spectroscopy for N incorporations ranging from doping concentrations up to x=5 × 10-2. We identified four different regimes of N incorporation with distinctly different band-gap scaling. N-doped GaAs shows sharp PL lines due to N cluster states, but no significant change in the band gap. In the ultradilute region (10-5≤x≤ 1.5 × 10-3) a strong band-gap reduction was observed which scales according to x, irrespective of the local distribution of N atoms in the As sublattice. The same band-gap scaling was observed for ultradilute InGaAsN after corrections for strain and In alloying. In an intermediate compositional region (1.5 × 10-3≤x≤2.5×10-2) ΔEg scales according to x2/3. At higher concentrations (x>2.5 × 10-2) ΔEg weakens due to effects connected with N oversaturation of the As sublattice

    The TBC1D31/praja2 complex controls primary ciliogenesis through PKA-directed OFD1 ubiquitylation

    No full text
    The primary cilium is a microtubule-based sensory organelle that dynamically links signalling pathways to cell differentiation, growth, and development. Genetic defects of primary cilia are responsible for genetic disorders known as ciliopathies. Orofacial digital type I syndrome (OFDI) is an X-linked congenital ciliopathy caused by mutations in the OFD1 gene and characterized by malformations of the face, oral cavity, digits and, in the majority of cases, polycystic kidney disease. OFD1 plays a key role in cilium biogenesis. However, the impact of signalling pathways and the role of the ubiquitin-proteasome system (UPS) in the control of OFD1 stability remain unknown. Here, we identify a novel complex assembled at centrosomes by TBC1D31, including the E3 ubiquitin ligase praja2, protein kinase A (PKA), and OFD1. We show that TBC1D31 is essential for ciliogenesis. Mechanistically, upon G-protein-coupled receptor (GPCR)-cAMP stimulation, PKA phosphorylates OFD1 at ser735, thus promoting OFD1 proteolysis through the praja2-UPS circuitry. This pathway is essential for ciliogenesis. In addition, a non-phosphorylatable OFD1 mutant dramatically affects cilium morphology and dynamics. Consistent with a role of the TBC1D31/praja2/OFD1 axis in ciliogenesis, alteration of this molecular network impairs ciliogenesis in vivo in Medaka fish, resulting in developmental defects. Our findings reveal a multifunctional transduction unit at the centrosome that links GPCR signalling to ubiquitylation and proteolysis of the ciliopathy protein OFD1, with important implications on cilium biology and development. Derangement of this control mechanism may underpin human genetic disorders

    Pathogenic variants in IMPG1 cause autosomal dominant and autosomal recessive retinitis pigmentosa

    No full text
    Inherited retinal disorders are a clinically and genetically heterogeneous group of conditions and a major cause of visual impairment. Common disease subtypes include vitelliform macular dystrophy (VMD) and retinitis pigmentosa (RP). Despite the identification of over 90 genes associated with RP, conventional genetic testing fails to detect a molecular diagnosis in about one third of patients with RP

    Music training enhances the automatic neural processing of foreign speech sounds

    No full text
    Abstract Growing evidence shows that music and language experience affect the neural processing of speech sounds throughout the auditory system. Recent work mainly focused on the benefits induced by musical practice on the processing of native language or tonal foreign language, which rely on pitch processing. The aim of the present study was to take this research a step further by investigating the effect of music training on processing English sounds by foreign listeners. We recorded subcortical electrophysiological responses to an English syllable in three groups of participants: native speakers, non-native nonmusicians, and non-native musicians. Native speakers had enhanced neural processing of the formant frequencies of speech, compared to non-native nonmusicians, suggesting that automatic encoding of these relevant speech cues are sensitive to language experience. Most strikingly, in non-native musicians, neural responses to the formant frequencies did not differ from those of native speakers, suggesting that musical training may compensate for the lack of language experience by strengthening the neural encoding of important acoustic information. Language and music experience seem to induce a selective sensory gain along acoustic dimensions that are functionally-relevant—here, formant frequencies that are crucial for phoneme discrimination
    corecore