3,856 research outputs found
Recommended from our members
Daytime precipitation estimation using bispectral cloud classification system
Two previously developed Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) algorithms that incorporate cloud classification system (PERSIANN-CCS) and multispectral analysis (PERSIANN-MSA) are integrated and employed to analyze the role of cloud albedo from Geostationary Operational Environmental Satellite-12 (GOES-12) visible (0.65 μm) channel in supplementing infrared (10.7 mm) data. The integrated technique derives finescale (0.04° × 0.04° latitudelongitude every 30 min) rain rate for each grid box through four major steps: 1) segmenting clouds into a number of cloud patches using infrared or albedo images; 2) classification of cloud patches into a number of cloud types using radiative, geometrical, and textural features for each individual cloud patch; 3) classification of each cloud type into a number of subclasses and assigning rain rates to each subclass using a multidimensional histogram matching method; and 4) associating satellite gridbox information to the appropriate corresponding cloud type and subclass to estimate rain rate in grid scale. The technique was applied over a study region that includes the U.S. landmass east of 115°W. One reference infrared-only and three different bis-pectral (visible and infrared) rain estimation scenarios were compared to investigate the technique's ability to address two major drawbacks of infrared-only methods: 1) underestimating warm rainfall and 2) the inability to screen out no-rain thin cirrus clouds. Radar estimates were used to evaluate the scenarios at a range of temporal (3 and 6 hourly) and spatial (0.04°, 0.08°, 0.12°, and 0.24° latitude-longitude) scales. Overall, the results using daytime data during June-August 2006 indicate that significant gain over infrared-only technique is obtained once albedo is used for cloud segmentation followed by bispectral cloud classification and rainfall estimation. At 3-h, 0.04° resolution, the observed improvement using bispectral information was about 66% for equitable threat score and 26% for the correlation coefficient. At coarser 0.24° resolution, the gains were 34% and 32% for the two performance measures, respectively. © 2010 American Meteorological Society
Recommended from our members
From lumped to distributed via semi-distributed: Calibration strategies for semi-distributed hydrologic models
Modeling the effect of spatial variability of precipitation and basin characteristics on streamflow requires the use of distributed or semi-distributed hydrologic models. This paper addresses a DMIP 2 study that focuses on the advantages of using a semi-distributed modeling structure. We first present a revised semi-distributed structure of the NWS SACramento Soil Moisture Accounting (SAC-SMA) model that separates the routing of fast and slow response runoff components, and thus explicitly accounts for the differences between the two components. We then test four different calibration strategies that take advantage of the strengths of existing optimization algorithms (SCE-UA) and schemes (MACS). These strategies include: (1) lumped parameters and basin averaged precipitation, (2) semi-lumped parameters and distributed precipitation forcing, (3) semi-distributed parameters and distributed precipitation forcing and (4) lumped parameters and basin averaged precipitation, modified using a priori parameters of the SAC-SMA model. Finally, we explore the value of using discharge observations at interior points in model calibration by assessing gains/losses in hydrograph simulations at the basin outlet. Our investigation focuses on two key DMIP 2 science questions. Specifically, we investigate (a) the ability of the semi-distributed model structure to improve stream flow simulations at the basin outlet and (b) to provide reasonably good simulations at interior points.The semi-distributed model is calibrated for the Illinois River Basin at Siloam Springs, Arkansas using streamflow observations at the basin outlet only. The results indicate that lumped to distributed calibration strategies (1 and 4) both improve simulation at the outlet and provide meaningful streamflow predictions at interior points. In addition, the results of the complementary study, which uses interior points during the model calibration, suggest that model performance at the outlet can be further improved by using a semi-distributed structure calibrated at both interior points and the outlet, even when only a few years of historical record are available. © 2009 Elsevier B.V
Ekonomi Dan Prestise Dalam Budaya Kerapan Sapi Di Madura
Penelitian ini menunjukkan bahwa nilai religiusitas budaya kerapan sapi dalam perjalanan sejarahnya telah mengalami Perubahan. Budaya kerapan sapi yang pada mulanya lebih dipersepsi sebagai teologi tradisional kemudian mengalami Perubahan makna ke arah teologi pasar. Dalam hal ini, Perubahan yang terjadi dalam aspek significant symbols yang tidak kelihatan (covert), menjadi significant symbols yang kelihatan (overt). Perubahan yang menyangkut suatu sikap mental orang Madura, yang pada mulanya kerapan sapi merupakan simbol nilai religius tradisional seperti kesopanan dan rasa hormat, kesederhanaan sebagai rekreasi yang terarah, berubah menjadi simbol ekonomi dan prestise yang permisif dan hedonis (berorientasi pasar), serta menjadi ajang untuk meraih citra dan pengakuan terhadap status sosial dan status ekonomi yang lebih tinggi. Perubahan ini juga berimplikasi pada motivasi orang Madura dalam memelihara dan memiliki sapi kerapan. Motivasi memelihara dan memiliki sapi kerapan menjadi bersifat ekonomis dan prestise.Copyright (c) 2016 by KARSA. All right reserved DOI: 10.19105/karsa. karsa.v24i2.91
Application of temporal streamflow descriptors in hydrologic model parameter estimation
This paper presents a parameter estimation approach based on hydrograph descriptors that capture dominant streamflow characteristics at three timescales (monthly, yearly, and record extent). The scheme, entitled hydrograph descriptors multitemporal sensitivity analyses (HYDMUS), yields an ensemble of model simulations generated from a reduced parameter space, based on a set of streamflow descriptors that emphasize the timescale dynamics of streamflow record. In this procedure the posterior distributions of model parameters derived at coarser timescales are used to sample model parameters for the next finer timescale. The procedure was used to estimate the parameters of the Sacramento soil moisture accounting model (SAC-SMA) for the Leaf River, Mississippi. The results indicated that in addition to a significant reduction in the range of parameter uncertainty, HYDMUS improved parameter identifiability for all 13 of the model parameters. The performance of the procedure was compared to four previous calibration studies on the same watershed. Although our application of HYDMUS did not explicitly consider the error at each simulation time step during the calibration process, the model performance was, in some important respects, found to be better than in previous deterministic studies. Copyright 2005 by the American Geophysical Union
Recommended from our members
PERSIANN-MSA: A precipitation estimation method from satellite-based multispectral analysis
Visible and infrared data obtained from instruments onboard geostationary satellites have been extensively used for monitoring clouds and their evolution. The Advanced Baseline Imager (ABI) that will be launched onboard the Geostationary Operational Environmental Satellite-R (GOES-R) series in the near future will offer a larger range of spectral bands; hence, it will provide observations of cloud and rain systems at even finer spatial, temporal, and spectral resolutions than are possible with the current GOES. In this paper, a new method called Precipitation Estimation from Remotely Sensed information using Artificial Neural Networks-Multispectral Analysis (PERSIANN-MSA) is proposed to evaluate the effect of using multispectral imagery on precipitation estimation. The proposed approach uses a self-organizing feature map (SOFM) to classify multidimensional input information, extracted from each grid box and corresponding textural features of multispectral bands. In addition, principal component analysis (PCA) is used to reduce the dimensionality to a few independent input features while preserving most of the variations of all input information. The above method is applied to estimate rainfall using multiple channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellite. In comparison to the use of a single thermal infrared channel, the analysis shows that using multispectral data has the potential to improve rain detection and estimation skills with an average of more than 50% gain in equitable threat score for rain/no-rain detection, and more than 20% gain in correlation coefficient associated with rain-rate estimation. © 2009 American Meteorological Society
The Language Attitude of Border Peoples Insular Riau, West Kalimantan, East Kalimantan, North Sulawesi, and the Eastern Sunda Islands
This research aims at describing (1) the language use of border area societies (Insular Riau, West Kalimantan, East Kalimantan, North Sulawesi, and the Eastern Sunda Islands) in terms of local language (BD), Indonesian (BI), and foreign language (BA) in the domains of family, society, and occupation, (2) language activity of border area societies relating to news observation, language attention, and language constraints in mass media, (3) language attitude of border area societies towards BD, BI, and BA. The findings are as follows. First, within the family and society at large, BD is more frequently used than BI and BA. This shows that BD functions in non-formal situations. In the professional field, however, BI is more frequently used than BD. Second, people in border provinces widely observe mass media, whether printed or electronic. They also often pay attention to the language the mass media uses. Third, border societies have a positive attitude towards BD as is shown (agree/totally agree) by the answers to eight questions relating to BD. The language attitude of border societies towards BI is positive based on the answers (agree/totally agree) to seven questions concerning BI. This also means that BI is prestigious for border people, especially in formal communication. The language attitude of border societies towards BA is mixed. In as far as it is negative it implies a positive evaluation of BD and BI because people appreciate them as part of their local and national identities
Parameter estimation of GOES precipitation index at different calibration timescales
We examined two techniques that adjust the parameters of the GOES Precipitation Index (GPI) by combining the polar microwave and the geosynchronous infrared observations at three frequencies: daily, pentad, and monthly. The first technique is the adjusted GPI (AGPI), and the second is the universally adjusted GPI (UAGPI). The study shows that rainfall estimates can be improved by frequent calibrations providing there is sufficient superior (microwave) rainfall sampling within the calibration time and space domain. For this work, daily and pentad calibrations produce monthly rainfall estimates almost as good as monthly calibration. The daily calibration produced better daily rainfall estimates than pentad and monthly calibration, but it generates similar pentad rainfall estimates to these of the pentad calibration. The monthly calibrated scheme is not suitable for the daily and pentad rainfall estimates. Under the current twice-per-day sampling rate of polar-orbiting microwave observations, the pentad calibration scheme is suggested for the monthly, pentad, and daily rainfall. The potentials of applying the UAGPI and the AGPI techniques for daily rainfall estimation are also investigated. Copyright 2000 by the American Geophysical Union
Recommended from our members
Diurnal variability of tropical rainfall retrieved from combined GOES and TRMM satellite information
Recent progress in satellite remote-sensing techniques for precipitation estimation, along with more accurate tropical rainfall measurements from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and precipitation radar (PR) instruments, have made it possible to monitor tropical rainfall diurnal patterns and their intensities from satellite information. One year (August 1998-July 1999) of tropical rainfall estimates from the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) systems were used to produce monthly means of rainfall diurnal cycles at hourly and 1° × 1° scales over a domain (30°S-30°N, 80°E-10°W) from the Americas across the Pacific Ocean to Australia and eastern Asia. The results demonstrate pronounced diurnal variability of tropical rainfall intensity at synoptic and regional scales. Seasonal signals of diurnal rainfall are presented over the large domain of the tropical Pacific Ocean, especially over the ITCZ and South Pacific convergence zone (SPCZ) and neighboring continents. The regional patterns of tropical rainfall diurnal cycles are specified in the Amazon, Mexico, the Caribbean Sea, Calcutta, Bay of Bengal, Malaysia, and northern Australia. Limited validations for the results include comparisons of 1) the PERSIANN-derived diurnal cycle of rainfall at Rondonia, Brazil, with that derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) radar data; 2) the PERSIANN diurnal cycle of rainfall over the western Pacific Ocean with that derived from the data of the optical rain gauges mounted on the TOGA-moored buoys: and 3) the monthly accumulations of rainfall samples from the orbital TMI and PR surface rainfall with the accumulations of concurrent PERSIANN estimates. These comparisons indicate that the PERSIANN-derived diurnal patterns at the selected resolutions produce estimates that are similar in magnitude and phase
Recommended from our members
Evaluating the utility of multispectral information in delineating the areal extent of precipitation
Data from geosynchronous Earth-orbiting (GEO) satellites equipped with visible (VIS) and infrared (IR) scanners are commonly used in rain retrieval algorithms. These algorithms benefit from the high spatial and temporal resolution of GEO observations, either in stand-alone mode or in combination with higher-quality but less frequent microwave observations from low Earth-orbiting (LEO) satellites. In this paper, a neural network-based framework is presented to evaluate the utility of multispectral information in improving rain/no-rain (R/NR) detection. The algorithm uses the powerful classification features of the self-organizing feature map (SOFM), along with probability matching techniques to map single- or multispectral input space into R/NR maps. The framework was tested and validated using the 31 possible combinations of the five Geostationary Operational Environmental Satellite 12 (GOES-12) channels. An algorithm training and validation study was conducted over the conterminous United States during June-August 2006. The results indicate that during daytime, the visible channel (0.65 μm) can yield significant improvements in R/NR detection capabilities, especially when combined with any of the other four GOES-12 channels. Similarly, for nighttime detection the combination of two IR channels - particularly channels 3 (6.5 μm) and 4 (10.7 μm)-resulted in significant performance gain over any single IR channel. In both cases, however, using more than two channels resulted only in marginal improvements over two-channel combinations. Detailed examination of event-based images indicate that the proposed algorithm is capable of extracting information useful to screen no-rain pixels associated with cold, thin clouds and identifying rain areas under warm but rainy clouds. Both cases have been problematic areas for IR-only algorithms. © 2009 American Meteorological Society
Recommended from our members
Self-organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis
Artificial neural networks (ANNs) can be useful in the prediction of hydrologic variables, such as streamflow, particularly when the underlying processes have complex nonlinear interrelationships. However, conventional ANN structures suffer from network training issues that significantly limit their widespread application. This paper presents a multivariate ANN procedure entitled self-organizing linear output map (SOLO), whose structure has been designed for rapid, precise, and inexpensive estimation of network structure/parameters and system outputs. More important, SOLO provides features that facilitate insight into the underlying processes, thereby extending its usefulness beyond forecast applications as a tool for scientific investigations. These characteristics are demonstrated using a classic rainfall-runoff forecasting problem. Various aspects of model performance are evaluated in comparison with other commonly used modeling approaches, including multilayer feedforward ANNs, linear time series modeling, and conceptual rainfall-runoff modeling
- …
