49 research outputs found

    A pre-adaptive approach for tropical forest restoration during climate change using naturally occurring genetic variation in response to water limitation

    Get PDF
    Effective reforestation of degraded tropical forests depends on selecting planting material suited to the stressful environments typical at restoration sites that can be exacerbated by increased duration and intensity of dry spells expected with climate change. While reforestation efforts in nontropical systems are incorporating drought-adapted genotypes into restoration programs to cope with drier conditions, such approaches have not been tested or implemented in tropical forests. As the first effort to examine genetic variation in plant response to drought in a tropical wet forest, we established a watering experiment using five replicated maternal lines (i.e. seedlings from different maternal trees) of five dipterocarp species native to Borneo. Apart from the expected species level variation in growth and herbivory (3-fold variation in both cases), we also found intraspecific variation so that growth in some cases varied 2-fold, and herbivory 3-fold, among genetically different maternal lines. In two species we found that among-maternal line variation in growth rate was negatively correlated with tolerance to water limitation, that is, the maternal lines that performed the best in the high water treatment lost proportionally more of their growth during water limitation. We argue that selection for tolerance to future drier conditions is not only likely to impact population genetics of entire forests, but likely extends from forest trees to the communities of canopy arthropods associated with these trees. In tropical reforestation efforts where increased drought is predicted from climate change, including plant material resilient to drier conditions may improve restoration effectiveness

    Explore before you restore: Incorporating complex systems thinking in ecosystem restoration

    Get PDF
    The global movement for ecosystem restoration has gained momentum in response to the Bonn Challenge (2010) and the UN Decade on Ecosystem Restoration (UNDER, 2021–2030). While several science-based guidelines exist to aid in achieving successful restoration outcomes, significant variation remains in the outcomes of restoration projects. Some of this disparity can be attributed to unexpected responses of ecosystem components to planned interventions.Given the complex nature of ecosystems, we propose that concepts from Complex Systems Science (CSS) that are linked to non-linearity, such as regime shifts, ecological resilience and ecological feedbacks, should be employed to help explain this variation in restoration outcomes from an ecological perspective.Our framework, Explore Before You Restore, illustrates how these concepts impact restoration outcomes by influencing degradation and recovery trajectories. Additionally, we propose incorporating CSS concepts into the typical restoration project cycle through a CSS assessment phase and suggest that the need for such assessment is explicitly included in the guidelines to improve restoration outcomes.To facilitate this inclusion and make it workable by practitioners, we describe indicators and methods available for restoration teams to answer key questions that should make up such CSS assessment. In doing so, we identify key outstanding science and policy tasks that are needed to further operationalize CSS assessment in restoration.Synthesis and applications. By illustrating how key Complex Systems Science (CSS) concepts linked to non-linear threshold behaviour can impact restoration outcomes through influencing recovery trajectories, our framework Explore Before You Restore demonstrates the need to incorporate Complex Systems thinking in ecosystem restoration. We argue that inclusion of CSS assessment into restoration project cycles, and more broadly, into international restoration guidelines, may significantly improve restoration outcomes

    Explore before you restore: Incorporating complex systems thinking in ecosystem restoration

    Get PDF
    Abstract The global movement for ecosystem restoration has gained momentum in response to the Bonn Challenge (2010) and the UN Decade on Ecosystem Restoration (UNDER, 2021–2030). While several science‐based guidelines exist to aid in achieving successful restoration outcomes, significant variation remains in the outcomes of restoration projects. Some of this disparity can be attributed to unexpected responses of ecosystem components to planned interventions. Given the complex nature of ecosystems, we propose that concepts from Complex Systems Science (CSS) that are linked to non‐linearity, such as regime shifts, ecological resilience and ecological feedbacks, should be employed to help explain this variation in restoration outcomes from an ecological perspective. Our framework, Explore Before You Restore, illustrates how these concepts impact restoration outcomes by influencing degradation and recovery trajectories. Additionally, we propose incorporating CSS concepts into the typical restoration project cycle through a CSS assessment phase and suggest that the need for such assessment is explicitly included in the guidelines to improve restoration outcomes. To facilitate this inclusion and make it workable by practitioners, we describe indicators and methods available for restoration teams to answer key questions that should make up such CSS assessment. In doing so, we identify key outstanding science and policy tasks that are needed to further operationalize CSS assessment in restoration. Synthesis and applications. By illustrating how key Complex Systems Science (CSS) concepts linked to non‐linear threshold behaviour can impact restoration outcomes through influencing recovery trajectories, our framework Explore Before You Restore demonstrates the need to incorporate Complex Systems thinking in ecosystem restoration. We argue that inclusion of CSS assessment into restoration project cycles, and more broadly, into international restoration guidelines, may significantly improve restoration outcomes. </jats:p

    The effect of temperature and substrate quality on the carbon use efficiency of saprotrophic decomposition

    Get PDF
    Background and aims: Mineralization of soil organic matter (SOM) constitutes a major carbon flux to the atmosphere. The carbon use efficiency (CUE) of the saprotrophic microorganisms mineralizing SOM is integral for soil carbon dynamics. Here we investigate how the CUE is affected by temperature, metabolic conditions, and the molecular complexity of the substrate. Methods: We incubated O-horizon soil samples (with either 13C–glucose or 13C–cellulose) from a boreal coniferous forest at 4, 9, 14, and 19 °C, and calculated CUEs based on the amount of 13C–CO2and 13C–labelled microbial biomass produced. The effects of substrate, temperature, and metabolic conditions (representing unlimited substrate supply and substrate limitation) on CUE were evaluated. Results: CUE from metabolizing glucose was higher as compared to cellulose. A slight decrease in CUE with increasing temperature was observed in glucose amended samples (but only in the range 9–19 °C), but not in cellulose amended samples. CUE differed significantly with metabolic conditions, i.e. CUE was higher during unlimited growth conditions as compared to conditions with substrate limitation. Conclusions: We conclude that it is integral to account for both differences in CUE during different metabolic phases, as well as complexity of substrate, when interpreting temperature dependence on CUE in incubation studies

    A 12-year record reveals pre-growing season temperature and water table level threshold effects on the net carbon dioxide exchange in a boreal fen

    No full text
    This study uses a 12-year time series (2001-2012) of eddy covariance measurements to investigate the long-term net ecosystem exchange (NEE) of carbon dioxide (CO2) and inter-annual variations in relation to abiotic drivers in a boreal fen in northern Sweden. The peatland was a sink for atmospheric CO2 in each of the twelve study years with a 12-year average (+/- standard deviation) NEE of -58 +/- 21 g C m(-2) yr(-1). For ten out of twelve years, the cumulative annual NEE was within a range of -42 to -79 g C m(-2) yr(-1) suggesting a general state of resilience of NEE to moderate inter-annual climate variations. However, the annual NEE of -18 and -106 g C m(-2) yr(-1) in 2006 and 2008, respectively, diverged considerably from this common range. The lower annual CO2 uptake in 2006 was mainly due to late summer emissions related to an exceptional drop in water table level (WTL). A positive relationship (R-2 = 0.65) between pre-growing season (January to April) air temperature (Ta) and summer (June to July) gross ecosystem production (GEP) was observed. We suggest that enhanced GEP due to mild pre-growing season air temperature in combination with air temperature constraints on ecosystem respiration (ER) during the following cooler summer explained most of the greater net CO2 uptake in 2008. Differences in the annual and growing season means of other abiotic variables (e.g. radiation, vapor pressure deficit, precipitation) and growing season properties (i.e. start date, end date, length) were unable to explain the inter-annual variations of NEE. Overall, our findings suggest that this boreal fen acts as a persistent contemporary sink for atmospheric CO2 that is, however, susceptible to severe anomalies in WTL and pre-growing season air temperature associated with predicted changes in climate patterns for the boreal region
    corecore