196 research outputs found

    On the Complexity of Case-Based Planning

    Full text link
    We analyze the computational complexity of problems related to case-based planning: planning when a plan for a similar instance is known, and planning from a library of plans. We prove that planning from a single case has the same complexity than generative planning (i.e., planning "from scratch"); using an extended definition of cases, complexity is reduced if the domain stored in the case is similar to the one to search plans for. Planning from a library of cases is shown to have the same complexity. In both cases, the complexity of planning remains, in the worst case, PSPACE-complete

    Vector coherent state representations, induced representations, and geometric quantization: I. Scalar coherent state representations

    Get PDF
    Coherent state theory is shown to reproduce three categories of representations of the spectrum generating algebra for an algebraic model: (i) classical realizations which are the starting point for geometric quantization; (ii) induced unitary representations corresponding to prequantization; and (iii) irreducible unitary representations obtained in geometric quantization by choice of a polarization. These representations establish an intimate relation between coherent state theory and geometric quantization in the context of induced representations.Comment: 29 pages, part 1 of two papers, published versio

    MAGE-A cancer/testis antigens inhibit MDM2 ubiquitylation function and promote increased levels of MDM4

    Get PDF
    Melanoma antigen A (MAGE-A) proteins comprise a structurally and biochemically similar sub-family of Cancer/Testis antigens that are expressed in many cancer types and are thought to contribute actively to malignancy. MAGE-A proteins are established regulators of certain cancer-associated transcription factors, including p53, and are activators of several RING finger-dependent ubiquitin E3 ligases. Here, we show that MAGE-A2 associates with MDM2, a ubiquitin E3 ligase that mediates ubiquitylation of more than 20 substrates including mainly p53, MDM2 itself, and MDM4, a potent p53 inhibitor and MDM2 partner that is structurally related to MDM2. We find that MAGE-A2 interacts with MDM2 via the N-terminal p53-binding pocket and the RING finger domain of MDM2 that is required for homo/hetero-dimerization and for E2 ligase interaction. Consistent with these data, we show that MAGE-A2 is a potent inhibitor of the E3 ubiquitin ligase activity of MDM2, yet it does not have any significant effect on p53 turnover mediated by MDM2. Strikingly, however, increased MAGE-A2 expression leads to reduced ubiquitylation and increased levels of MDM4. Similarly, silencing of endogenous MAGE-A expression diminishes MDM4 levels in a manner that can be rescued by the proteasomal inhibitor, bortezomid, and permits increased MDM2/MDM4 association. These data suggest that MAGE-A proteins can: (i) uncouple the ubiquitin ligase and degradation functions of MDM2; (ii) act as potent inhibitors of E3 ligase function; and (iii) regulate the turnover of MDM4. We also find an association between the presence of MAGE-A and increased MDM4 levels in primary breast cancer, suggesting that MAGE-A-dependent control of MDM4 levels has relevance to cancer clinically

    Experimental Helicobacter marmotae infection in A/J mice causes enterohepatic disease

    Get PDF
    Helicobacter marmotae has been identified in the inflamed livers of Eastern woodchucks (Marmota monax) infected with woodchuck hepatitis virus (WHV), as well as from the livers of WHV-negative woodchucks. Because the majority of WHV-positive woodchucks with hepatic tumours were culture or PCR positive for this helicobacter, and WHV-negative woodchucks with H. marmotae had hepatitis, the bacterium may have a role in tumour promotion related to chronic inflammation. In this study, the type strain of H. marmotae was inoculated intraperitoneally into 48 male and female A/J mice, a strain noted to be susceptible to Helicobacter hepaticus-induced liver tumours. Sixteen mice served as mock-dosed controls. At 6, 12 and 18 months post-inoculation (p.i.), there were statistically significant (P<0.05) differences in mean inflammation scores for the caecum and proximal colon between experimentally infected and control mice. Differences in hepatic inflammation were significant (P<0.05) at 6 and 12 months p.i. between the two groups but not at the 18 month time point. Two infected male mice had livers with severe hepatitis, and the liver samples were culture positive for H. marmotae. Serum IgG levels in the mice dosed with H. marmotae were elevated for the duration of the study. These results demonstrate that the woodchuck helicobacter can successfully colonize mice and cause enterohepatic disease. In the future, a mouse-adapted strain of H. marmotae could be selected to maximize colonization and lesion development. Such a woodchuck helicobacter-infected mouse model could be used to dissect potential mechanisms of microbial co-carcinogenesis involved in tumour development in woodchucks with WHV and in humans with hepatitis B virus

    Novel Quantitative Real-Time LCR for the Sensitive Detection of SNP Frequencies in Pooled DNA: Method Development, Evaluation and Application

    Get PDF
    BACKGROUND: Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of SNP in DNA pooled samples. METHODS: The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility to a transmissible spongiform encephalopathy in sheep. CONCLUSIONS: The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP frequencies were 0.085% and 0.35%, respectively. SIGNIFICANCE: The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically modified organisms in food

    Enhanced M1 Macrophage Polarization in Human Helicobacter pylori-Associated Atrophic Gastritis and in Vaccinated Mice

    Get PDF
    Background: Infection with Helicobacter pylori triggers a chronic gastric inflammation that can progress to atrophy and gastric adenocarcinoma. Polarization of macrophages is a characteristic of both cancer and infection, and may promote progression or resolution of disease. However, the role of macrophages and their polarization during H. pylori infection has not been well defined. Methodology/Principal Findings: By using a mouse model of infection and gastric biopsies from 29 individuals, we have analyzed macrophage recruitment and polarization during H. pylori infection by flow cytometry and real-time PCR. We found a sequential recruitment of neutrophils, eosinophils and macrophages to the gastric mucosa of infected mice. Gene expression analysis of stomach tissue and sorted macrophages revealed that gastric macrophages were polarized to M1 after H. pylori infection, and this process was substantially accelerated by prior vaccination. Human H. pylori infection was characterized by a mixed M1/M2 polarization of macrophages. However, in H. pylori-associated atrophic gastritis, the expression of inducible nitric oxide synthase was markedly increased compared to uncomplicated gastritis, indicative of an enhanced M1 macrophage polarization in this pre-malignant lesion. Conclusions/Significance: These results show that vaccination of mice against H. pylori amplifies M1 polarization of gastric macrophages, and that a similar enhanced M1 polarization is present in human H. pylori-induced atrophic gastritis

    Using video modeling to teach complex social sequences to children with autism

    Get PDF
    This study comprised of two experiments was designed to teach complex social sequences to children with autism. Experimental control was achieved by collecting data using means of within-system design methodology. Across a number of conditions children were taken to a room to view one of the four short videos of two people engaging in a simple sequence of activities. Then, each child’s behavior was assessed in the same room. Results showed that this video modeling procedure enhanced the social initiation skills of all children. It also facilitated reciprocal play engagement and imitative responding of a sequence of behaviors, in which social initiation was not included. These behavior changes generalized across peers and maintained after a 1- and 2-month follow-up period
    corecore