4,471 research outputs found
Introduction: Analytic, Continental and the question of a bridge
This is the peer reviewed version of the following article: Introduction: Analytic, Continental and the question of a bridge, which has been published in final form at 10.1177/1474885115582078. This article may be used for non-commercial purposes in accordance with SAGE’s Terms and Conditions for Self-Archiving.In philosophy and political theory, divisions come and go, but some persist despite beingobviously problematic. The analytic and Continental divide is one such division. Inpolitical philosophy and political theory, the division has been particularly pronounced.Analytic and Continental thinkers are divided not only over substantial issues but also over the very nature of political theorising. In spite of this fundamental nature, theorists often seem to assume that, as a division, the analytic/Continental divide requires no explanation. We suggest that, as a central division within political theory, and despite being acknowledged as problematic for quite some time, it has persisted because it has not been adequately examined. Once examined, the division turns out to be operationally weaker than it once was. In recent years, there has been a growing interest in engaging thinkers from the other side. This has been accompanied by a corresponding tendency, among both analytic and Continental philosophers and political thinkers, to reflect on the nature of their own tradition and ‘philosophy’. Both traditions have entered a self-conscious period of meta-reflection. Such questioning indicates the possibility of transformation within both groups, in the absence of settled frameworks and divisions. However, it is also clear that such signs are the beginning of the possibility of a new relation rather than a sign of the eclipse of the division. The continued institutional separation and the space between their respective philosophical vocabularies suggest that, while the time is ripe for work here, there is still much to be done
Predicted Abundances of Carbon Compounds in Volcanic Gases on Io
We use chemical equilibrium calculations to model the speciation of carbon in
volcanic gases on Io. The calculations cover wide temperature (500-2000 K),
pressure (10^-8 to 10^+2 bars), and composition ranges (bulk O/S atomic ratios
\~0 to 3), which overlap the nominal conditions at Pele (1760 K, 0.01 bar, O/S
~ 1.5). Bulk C/S atomic ratios ranging from 10^-6 to 10^-1 in volcanic gases
are used with a nominal value of 10^-3 based upon upper limits from Voyager for
carbon in the Loki plume on Io. Carbon monoxide and CO2 are the two major
carbon gases under all conditions studied. Carbonyl sulfide and CS2 are orders
of magnitude less abundant. Consideration of different loss processes
(photolysis, condensation, kinetic reactions in the plume) indicates that
photolysis is probably the major loss process for all gases. Both CO and CO2
should be observable in volcanic plumes and in Io's atmosphere at abundances of
several hundred parts per million by volume for a bulk C/S ratio of 10^-3.Comment: 21 pages, 4 figures, 4 tables; accepted by Astrophysical Journa
Modus Vivendi Beyond the Social Contract: Peace, Justice, and Survival in Realist Political Theory
This essay examines the promise of the notion of modus vivendi for realist political theory. I interpret recent theories of modus vivendi as affirming the priority of peace over justice, and explore several ways of making sense of this idea. I proceed to identify two key problems for modus vivendi theory, so conceived. Normatively speaking, it remains unclear how this approach can sustain a realist critique of Rawlsian theorizing about justice while avoiding a Hobbesian endorsement of absolutism. And conceptually, the theory remains wedded to a key feature of social contract theory: political order is conceived as based on agreement. This construes the horizontal tensions among individual or group agents in society as prior to the vertical, authoritative relations between authorities and their subjects. Political authority thereby appears from the start as a solution to societal conflict, rather than a problem in itself. I argue that this way of framing the issue abstracts from political experience. Instead I attempt to rethink the notion of modus vivendi from within the lived experience of political conflict, as oriented not primarily toward peace, but political survival. With this shift of perspective, the idea of modus vivendi shows us, pace Bernard Williams, that the “first political question” is not how to achieve order and stability, but rather: what can I live with
Fast Non-Adiabatic Two Qubit Gates for the Kane Quantum Computer
In this paper we apply the canonical decomposition of two qubit unitaries to
find pulse schemes to control the proposed Kane quantum computer. We explicitly
find pulse sequences for the CNOT, swap, square root of swap and controlled Z
rotations. We analyze the speed and fidelity of these gates, both of which
compare favorably to existing schemes. The pulse sequences presented in this
paper are theoretically faster, higher fidelity, and simpler than existing
schemes. Any two qubit gate may be easily found and implemented using similar
pulse sequences. Numerical simulation is used to verify the accuracy of each
pulse scheme
The Frenet Serret Description of Gyroscopic Precession
The phenomenon of gyroscopic precession is studied within the framework of
Frenet-Serret formalism adapted to quasi-Killing trajectories. Its relation to
the congruence vorticity is highlighted with particular reference to the
irrotational congruence admitted by the stationary, axisymmetric spacetime.
General precession formulae are obtained for circular orbits with arbitrary
constant angular speeds. By successive reduction, different types of
precessions are derived for the Kerr - Schwarzschild - Minkowski spacetime
family. The phenomenon is studied in the case of other interesting spacetimes,
such as the De Sitter and G\"{o}del universes as well as the general
stationary, cylindrical, vacuum spacetimes.Comment: 37 pages, Paper in Late
Chiasma
Newspaper reporting on events at the Boston University School of Medicine in the 1960s
Error Rate of the Kane Quantum Computer CNOT Gate in the Presence of Dephasing
We study the error rate of CNOT operations in the Kane solid state quantum
computer architecture. A spin Hamiltonian is used to describe the system.
Dephasing is included as exponential decay of the off diagonal elements of the
system's density matrix. Using available spin echo decay data, the CNOT error
rate is estimated at approsimately 10^{-3}.Comment: New version includes substantial additional data and merges two old
  figures into one. (12 pages, 6 figures
Like-charge attraction through hydrodynamic interaction
We demonstrate that the attractive interaction measured between like-charged
colloidal spheres near a wall can be accounted for by a nonequilibrium
hydrodynamic effect. We present both analytical results and Brownian dynamics
simulations which quantitatively capture the one-wall experiments of Larsen and
Grier (Nature 385, p. 230, 1997).Comment: 10 pages, 4 figure
Characterization of nanometer-sized, mechanically exfoliated graphene on the H-passivated Si(100) surface using scanning tunnelling microscopy
We have developed a method for depositing graphene monolayers and bilayers
with minimum lateral dimensions of 2-10 nm by the mechanical exfoliation of
graphite onto the Si(100)-2x1:H surface. Room temperature, ultra-high vacuum
(UHV) tunnelling spectroscopy measurements of nanometer-sized single-layer
graphene reveal a size dependent energy gap ranging from 0.1-1 eV. Furthermore,
the number of graphene layers can be directly determined from scanning
tunnelling microscopy (STM) topographic contours. This atomistic study provides
an experimental basis for probing the electronic structure of nanometer-sized
graphene which can assist the development of graphene-based nanoelectronics.Comment: Accepted for publication in Nanotechnolog
Measurements of polarized photo-pion production on longitudinally polarized HD and Implications for Convergence of the GDH Integral
We report new measurements of inclusive pion production from frozen-spin HD
for polarized photon beams covering the Delta(1232) resonance. These provide
data simultaneously on both H and D with nearly complete angular distributions
of the spin-difference cross sections entering the Gerasimov-Drell-Hearn (GDH)
sum rule. Recent results from Mainz and Bonn exceed the GDH prediction for the
proton by 22 microbarns, suggesting as yet unmeasured high-energy components.
Our pi0 data reveal a different angular dependence than assumed in Mainz
analyses and integrate to a value that is 18 microbarns lower, suggesting a
more rapid convergence. Our results for deuterium are somewhat lower than
published data, considerably more precise and generally lower than available
calculations.Comment: 4 pages, 4 figures. Submitted for publication in Physical Review
  Letter
- …
