5,961 research outputs found
Calibration of the Ames Anechoic Facility. Phase 1: Short range plan
A calibration was made of the acoustic and aerodynamic characteristics of a small, open-jet wind tunnel in an anechoic room. The jet nozzle was 102 mm diameter and was operated subsonically. The anechoic-room dimensions were 7.6 m by 5.5 m by 3.4 m high (wedge tip to wedge tip). Noise contours in the chamber were determined by various jet speeds and exhaust collector positions. The optimum nozzle/collector separation from an acoustic standpoint was 2.1 m. Jet velocity profiles and turbulence levels were measured using pressure probes and hot wires. The jet was found to be symmetric, with no unusual characteristics. The turbulence measurements were hampered by oil mist contamination of the airflow
Analytical solution of the equation of motion for a rigid domain wall in a magnetic material with perpendicular anisotropy
This paper reports the solution of the equation of motion for a domain wall
in a magnetic material which exhibits high magneto-crystalline anisotropy.
Starting from the Landau-Lifschitz-Gilbert equation for field-induced motion,
we solve the equation to give an analytical expression, which specifies the
domain wall position as a function of time. Taking parameters from a Co/Pt
multilayer system, we find good quantitative agreement between calculated and
experimentally determined wall velocities, and show that high field uniform
wall motion occurs when wall rigidity is assumed.Comment: 4 pages, 4 figure
Controlled enhancement or suppression of exchange biasing using impurity -layers
The effects of inserting impurity -layers of various elements into a
Co/IrMn exchange biased bilayer, at both the interface, and at given points
within the IrMn layer a distance from the interface, has been investigated.
Depending on the chemical species of dopant, and its position, we found that
the exchange biasing can be either strongly enhanced or suppressed. We show
that biasing is enhanced with a dusting of certain magnetic impurities, present
at either at the interface or sufficiently far away from the Co/IrMn interface.
This illustrates that the final spin structure at the Co/IrMn interface is not
only governed by interface structure/roughness but is also mediated by local
exchange or anisotropy variations within the bulk of the IrMn
Durable low surface-energy surfaces
A formulation for forming a low surface-energy surface on a substrate having (i) a fluoroalkyl silane having a low surface energy part, (ii) a liquid crystal silane operable for enhancing the orientation of the molecules of the fluoroalkyl silane and for crosslinking with the fluoroalkyl silane, and, (iii) a transport medium for applying the fluoroalkyl silane and the liquid crystal silane to the surface of a substrate. In one embodiment the formulation can includes a crosslinking agent for crosslinking the fluoroalkyl silane. In another embodiment the formulation has a condensation catalyst for enhancing chemical bonding of the fluoroalkyl silane to the substrate. The transport medium can be an alcohol such as methanol or ethanol
Imaging faint brown dwarf companions close to bright stars with a small, well-corrected telescope aperture
We have used our 1.6 m diameter off-axis well-corrected sub-aperture (WCS) on
the Palomar Hale telescope in concert with a small inner-working-angle (IWA)
phase-mask coronagraph to image the immediate environs of a small number of
nearby stars. Test cases included three stars (HD 130948, HD 49197 and HR7672)
with known brown dwarf companions at small separations, all of which were
detected. We also present the initial detection of a new object close to the
nearby young G0V star HD171488. Follow up observations are needed to determine
if this object is a bona fide companion, but its flux is consistent with the
flux of a young brown dwarf or low mass M star at the same distance as the
primary. Interestingly, at small angles our WCS coronagraph demonstrates a
limiting detectable contrast comparable to that of extant Lyot coronagraphs on
much larger telescopes corrected with current-generation AO systems. This
suggests that small apertures corrected to extreme adaptive optics (ExAO)
levels can be used to carry out initial surveys for close brown dwarf and
stellar companions, leaving followup observations for larger telescopes.Comment: accepted for publication in the Astrophysical Journa
Toward a New Kind of Asteroseismic Grid Fitting
Recent developments in instrumentation (e.g., in particular the Kepler and
CoRoT satellites) provide a new opportunity to improve the models of stellar
pulsations. Surface layers, rotation, and magnetic fields imprint erratic
frequency shifts, trends, and other non-random behavior in the frequency
spectra. As our observational uncertainties become smaller, these are
increasingly important and difficult to deal with using standard fitting
techniques. To improve the models, new ways to compare their predictions with
observations need to be conceived. In this paper we present a completely
probabilistic (Bayesian) approach to asteroseismic model fitting. It allows for
varying degrees of prior mode identification, corrections for the discrete
nature of the grid, and most importantly implements a treatment of systematic
errors, such as the "surface effects." It removes the need to apply semi-
empirical corrections to the observations prior to fitting them to the models
and results in a consistent set of probabilities with which the model physics
can be probed and compared. As an example, we show a detailed asteroseismic
analysis of the Sun. We find a most probable solar age, including a 35 +- 5
million year pre-main sequence phase, of 4.591 billion years, and initial
element mass fractions of X_0 = 0.72, Y_0 = 0.264, Z_0 = 0.016, consistent with
recent asteroseismic and non-asteroseismic studies.Comment: 15 pages, 5 figures, accepted for publication in The Astrophysical
Journal; v2 contains minor changes made in the proofs (updated references &
corrected typos
- …
