11,248 research outputs found

    The large core limit of spiral waves in excitable media: A numerical approach

    Full text link
    We modify the freezing method introduced by Beyn & Thuemmler, 2004, for analyzing rigidly rotating spiral waves in excitable media. The proposed method is designed to stably determine the rotation frequency and the core radius of rotating spirals, as well as the approximate shape of spiral waves in unbounded domains. In particular, we introduce spiral wave boundary conditions based on geometric approximations of spiral wave solutions by Archimedean spirals and by involutes of circles. We further propose a simple implementation of boundary conditions for the case when the inhibitor is non-diffusive, a case which had previously caused spurious oscillations. We then utilize the method to numerically analyze the large core limit. The proposed method allows us to investigate the case close to criticality where spiral waves acquire infinite core radius and zero rotation frequency, before they begin to develop into retracting fingers. We confirm the linear scaling regime of a drift bifurcation for the rotation frequency and the core radius of spiral wave solutions close to criticality. This regime is unattainable with conventional numerical methods.Comment: 32 pages, 17 figures, as accepted by SIAM Journal on Applied Dynamical Systems on 20/03/1

    An efficient new route to dihydropyranobenzimidazole inhibitors of HCV replication.

    Get PDF
    A class of dihydropyranobenzimidazole inhibitors was recently discovered that acts against the hepatitis C virus (HCV) in a new way, binding to the IRES-IIa subdomain of the highly conserved 5' untranslated region of the viral RNA and thus preventing the ribosome from initiating translation. However, the reported synthesis of these compounds is lengthy and low-yielding, the intermediates are troublesome to purify, and the route is poorly structured for the creation of libraries. We report a streamlined route to this class of inhibitors in which yields are far higher and most intermediates are crystalline. In addition, a key variable side chain is introduced late in the synthesis, allowing analogs to be easily synthesized for optimization of antiviral activity

    Pattern Selection in the Complex Ginzburg-Landau Equation with Multi-Resonant Forcing

    Full text link
    We study the excitation of spatial patterns by resonant, multi-frequency forcing in systems undergoing a Hopf bifurcation to spatially homogeneous oscillations. Using weakly nonlinear analysis we show that for small amplitudes only stripe or hexagon patterns are linearly stable, whereas square patterns and patterns involving more than three modes are unstable. In the case of hexagon patterns up- and down-hexagons can be simultaneously stable. The third-order, weakly nonlinear analysis predicts stable square patterns and super-hexagons for larger amplitudes. Direct simulations show, however, that in this regime the third-order weakly nonlinear analysis is insufficient, and these patterns are, in fact unstable

    Notes on the Norman vocabulary

    Get PDF
    The Norman Manuscript, containing- a vocabulary and notes on customs in use among Tasmanian Aboriginals, was recently discovered among the archives deposited in the Tasmanian Museum, Hobart, and is now published in full in the Transactions of the Royal Society of Tasmania. It is of great value, as containing what is probably the only vocabulary now extant in the original manuscript, and also a number of incidental notes written by the same hand

    Noise diffraction patterns eliminated in coherent optical systems

    Get PDF
    Lens rotation technique of noise diffraction pattern elimination spreads diffracted energy, normally concentrated over small area of image, over much larger annular area. Technique advantages include simplified lens selecting process, reduced clean room requirements, and low cost equipment requirements

    Breakdown of the Fermi-liquid regime in the 2D Hubbard model from a two-loop field-theoretical renormalization group approach

    Full text link
    We analyze the particle-hole symmetric two-dimensional Hubbard model on a square lattice starting from weak-to-moderate couplings by means of the field-theoretical renormalization group (RG) approach up to two-loop order. This method is essential in order to evaluate the effect of the momentum-resolved anomalous dimension η(p)\eta(\textbf{p}) which arises in the normal phase of this model on the corresponding low-energy single-particle excitations. As a result, we find important indications pointing to the existence of a non-Fermi liquid (NFL) regime at temperature T→0T\to 0 displaying a truncated Fermi surface (FS) for a doping range exactly in between the well-known antiferromagnetic insulating and the dx2−y2d_{x^2-y^2}-wave singlet superconducting phases. This NFL evolves as a function of doping into a correlated metal with a large FS before the dx2−y2d_{x^2-y^2}-wave pairing susceptibility finally produces the dominant instability in the low-energy limit.Comment: 9 pages, 9 figures; published in Phys. Rev.

    Symmetries,Singularities and the De-Emergence of Space

    Full text link
    Recent work has revealed intriguing connections between a Belinsky-Khalatnikov-Lifshitz-type analysis of spacelike singularities in General Relativity and certain infinite dimensional Lie algebras, and in particular the `maximally extended' hyperbolic Kac--Moody algebra E10. In this essay we argue that these results may lead to an entirely new understanding of the (quantum) nature of space(-time) at the Planck scale, and hence -- via an effective `de-emergence' of space near a singularity -- to a novel mechanism for achieving background independence in quantum gravity.Comment: 10 page

    Easy implementable algorithm for the geometric measure of entanglement

    Full text link
    We present an easy implementable algorithm for approximating the geometric measure of entanglement from above. The algorithm can be applied to any multipartite mixed state. It involves only the solution of an eigenproblem and finding a singular value decomposition, no further numerical techniques are needed. To provide examples, the algorithm was applied to the isotropic states of 3 qubits and the 3-qubit XX model with external magnetic field.Comment: 9 pages, 3 figure

    Elimination of coherent noise in a coherent light imaging system

    Get PDF
    Optical imaging systems using coherent light introduce objectionable noise into the output image plane. Dust and bubbles on and in lenses cause most of the noise in the output image. This noise usually appears as bull's-eye diffraction patterns in the image. By rotating the lens about the optical axis these diffraction patterns can be essentially eliminated. The technique does not destroy the spatial coherence of the light and permits spatial filtering of the input plane
    • …
    corecore