100 research outputs found
Tyrosine kinase inhibitors reprogramming immunity in renal cell carcinoma: rethinking cancer immunotherapy
Review article[Abstract] The immune system regulates angiogenesis in cancer by way of both pro- and antiangiogenic activities. A bidirectional link between angiogenesis and the immune system has been clearly demonstrated. Most antiangiogenic molecules do not inhibit only VEGF signaling pathways but also other pathways which may affect immune system. Understanding of the role of these pathways in the regulation of immunosuppressive mechanisms by way of specific inhibitors is growing. Renal cell carcinoma (RCC) is an immunogenic tumor in which angiogenesis and immunosuppression work hand in hand, and its growth is associated with impaired antitumor immunity. Given the antitumor activity of selected TKIs in metastatic RCC (mRCC), it seems relevant to assess their effect on the immune system. The confirmation that TKIs improve cell cytokine response in mRCC provides a basis for the rational combination and sequential treatment of TKIs and immunotherapy
Tumor-associated macrophages in clear cell renal cell carcinoma express both gastrin-releasing peptide and its receptor: a possible modulatory role of immune effectors cells
Renal cell carcinomas (RCC) frequently express the gastrin-releasing peptide receptor (GRP-R). Gastrin-releasing peptide (GRP) stimulates tumor cell proliferation and neoangiogenesis. Tumor-associated macrophages (TAM) comprise an important cellular component of these tumors. We analyzed the GRP/GRP-R network in clear cell RCC (ccRCC) and non-clear cell RCC (non-ccRCC) with special regard to its expression by macrophages, tumor cells and microvessels. Gastrin-releasing peptide and GRP-R expression in 17 ccRCC and 9 non-ccRCC were analyzed by RT-PCR, immunohistochemistry and double immunofluorescence staining. Tumor-associated macrophages expressed GRP and GRP receptor in ccRCC. Tumor cells and microvessels showed low to intermediate GRP-R expression in nearly all cases. In 12 ccRCC tumor epithelia also expressed low levels of GRP. Microvascular GRP expression was found in nine cases of ccRCC. For non-RCC, the expression of GRP and GRP receptor expression pattern was similar. Tumor-associated macrophages are the main source of GRP in RCC. GRP receptor on TAM, tumor epithelia and microvessels might be a molecular base of a GRP/GRP receptor network, potentially acting as a paracrine/autocrine modulator of TAM recruitment, tumor growth and neoangiogenesis
The Eag potassium channel as a new prognostic marker in ovarian cancer
<p>Abstract</p> <p>Background</p> <p>Ovarian cancer is the second most common cancer of the female genital tract in the United Kingdom (UK), accounting for 6% of female deaths due to cancer. This cancer is associated with poor survival and there is a need for new treatments in addition to existing chemotherapy to improve survival. Potassium (K<sup>+</sup>) channels have been shown to be overexpressed in various cancers where they appear to play a role in cell proliferation and progression.</p> <p>Objectives</p> <p>To determine the expression of the potassium channels Eag and HERG in ovarian cancer tissue and to assess their role in cell proliferation.</p> <p>Methods</p> <p>The expression of Eag and HERG potassium channels was examined in an ovarian cancer tissue microarray. Their role in cell proliferation was investigated by blocking voltage-gated potassium channels in an ovarian cancer cell line (SK-OV-3).</p> <p>Results</p> <p>We show for the first time that high expression of Eag channels in ovarian cancer patients is significantly associated with poor survival (P = 0.016) unlike HERG channel expression where there was no correlation with survival. There was also a significant association of Eag staining with high tumour grade (P = 0.014) and presence of residual disease (P = 0.011). Proliferation of SK-OV-3 cells was significantly (P < 0.001) inhibited after treatment with voltage gated K<sup>+ </sup>channel blockers.</p> <p>Conclusion</p> <p>This novel finding demonstrates a role for Eag as a prognostic marker for survival in patients with ovarian cancer.</p
Genes and pathways underlying susceptibility to impaired lung function in the context of environmental tobacco smoke exposure
N-cadherin is differentially expressed in histological subtypes of papillary renal cell carcinoma
BACKGROUND: Papillary renal cell carcinoma (RCC) represents a rare tumor, which is divided, based on histological criteria, into two subtypes. In contrast to type I papillary RCC type II papillary RCC shows a worse prognosis. So far, reliable immunohistochemical markers for the distinction of these subtypes are not available. METHODS: In the present study the expression of N(neural)-, E(epithelial)-, P(placental)-, und KSP(kidney specific)-cadherin was examined in 22 papillary RCC of histological type I and 18 papillary RCC of histological type II (n = 40). RESULTS: All papillary RCC type II displayed a membranous expression for N-cadherin, whereas type I did not show any membranous positivity for N-cadherin. E-cadherin exhibited a stronger, but not significant, membranous as well as cytoplasmic expression in type II than in type I papillary RCC. A diagnostic relevant expression of P- and KSP-cadherin could not be demonstrated in both tumor entities. CONCLUSION: Thus N-cadherin represents the first immunhistochemical marker for a clear cut differentiation between papillary RCC type I and type II and could be a target for therapy and diagnostic in the future. VIRTUAL SLIDES: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/201155698276173
Nucleofection induces non-specific changes in the metabolic activity of transfected cells
Transfection has become an everyday technique widely used for functional studies in living cells. The choice of the particular transfection method is usually determined by its efficiency and toxicity, and possible functional consequences specific to the method used are normally overlooked. We describe here that nucleofection, a method increasingly used because of its convenience and high efficiency, increases the metabolic rate of some cancer cells, which can be misleading when used as a measure of proliferation. Moreover, nucleofection can alter the subcellular expression pattern of the transfected protein. These undesired effects are independent of the transfected nucleic acid, but depend on the particular cell line used. Therefore, the interpretation of functional data using this technology requires further controls and caution
Betulinic acid induces apoptosis and inhibits hedgehog signalling in rhabdomyosarcoma
BACKGROUND: Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in childhood with the ability to resist apoptosis by the activation of survival promoting and anti-apoptotic proteins. METHODS: Efficacy of the apoptosis-inducing agent betulinic acid (BA) was determined in RMS cell cultures and in vivo by measuring cell viability, survival, apoptosis, hedgehog signalling activity, and neovascularisation. RESULTS: Betulinic acid had a strong cytotoxic effect on RMS cells in a dose-dependent manner. The BA treatment caused a massive induction of apoptosis mediated by the intrinsic mitochondrial pathway, which could be inhibited by the broad-range caspase inhibitor zVAD.fmk. Exposure of hedgehog-activated RMS-13 cells to BA resulted in a strong decrease in GLI1, GLI2, PTCH1, and IGF2 expression as well as hedgehog-responsive luciferase activity. Intraperitoneal injection of 20 mg BA per kg per day significantly retarded growth of RMS-13 xenografts in association with markedly higher counts of apoptotic cells and down-regulation of GLI1 expression compared with control tumours, while leaving microvascular density, cell proliferation, and myogenic differentiation unaffected. CONCLUSION: Our data show that induction of apoptosis and inhibition of hedgehog signalling are important features of the anti-tumourigenic effect of BA in RMS and advices this compound for the use in a multimodal therapy of this highly aggressive paediatric tumour. British Journal of Cancer (2010) 103, 43-51. doi:10.1038/sj.bjc.6605715 www.bjcancer.com Published online 1 June 2010 (C) 2010 Cancer Research U
Transcriptional and Post-Transcriptional Mechanisms for Oncogenic Overexpression of Ether À Go-Go K+ Channel
The human ether-à-go-go-1 (h-eag1) K+ channel is expressed in a variety of cell lines derived from human malignant tumors and in clinical samples of several different cancers, but is otherwise absent in normal tissues. It was found to be necessary for cell cycle progression and tumorigenesis. Specific inhibition of h-eag1 expression leads to inhibition of tumor cell proliferation. We report here that h-eag1 expression is controlled by the p53−miR-34−E2F1 pathway through a negative feed-forward mechanism. We first established E2F1 as a transactivator of h-eag1 gene through characterizing its promoter region. We then revealed that miR-34, a known transcriptional target of p53, is an important negative regulator of h-eag1 through dual mechanisms by directly repressing h-eag1 at the post-transcriptional level and indirectly silencing h-eag1 at the transcriptional level via repressing E2F1. There is a strong inverse relationship between the expression levels of miR-34 and h-eag1 protein. H-eag1antisense antagonized the growth-stimulating effects and the upregulation of h-eag1 expression in SHSY5Y cells, induced by knockdown of miR-34, E2F1 overexpression, or inhibition of p53 activity. Therefore, p53 negatively regulates h-eag1 expression by a negative feed-forward mechanism through the p53−miR-34−E2F1 pathway. Inactivation of p53 activity, as is the case in many cancers, can thus cause oncogenic overexpression of h-eag1 by relieving the negative feed-forward regulation. These findings not only help us understand the molecular mechanisms for oncogenic overexpression of h-eag1 in tumorigenesis but also uncover the cell-cycle regulation through the p53−miR-34−E2F1−h-eag1 pathway. Moreover, these findings place h-eag1 in the p53−miR-34−E2F1−h-eag1 pathway with h-eag as a terminal effecter component and with miR-34 (and E2F1) as a linker between p53 and h-eag1. Our study therefore fills the gap between p53 pathway and its cellular function mediated by h-eag1
Eag and HERG potassium channels as novel therapeutic targets in cancer
Voltage gated potassium channels have been extensively studied in relation to cancer. In this review, we will focus on the role of two potassium channels, Ether à-go-go (Eag), Human ether à-go-go related gene (HERG), in cancer and their potential therapeutic utility in the treatment of cancer. Eag and HERG are expressed in cancers of various organs and have been implicated in cell cycle progression and proliferation of cancer cells. Inhibition of these channels has been shown to reduce proliferation both in vitro and vivo studies identifying potassium channel modulators as putative inhibitors of tumour progression. Eag channels in view of their restricted expression in normal tissue may emerge as novel tumour biomarkers
Functional KV10.1 Channels Localize to the Inner Nuclear Membrane
Ectopically expressed human KV10.1 channels are relevant players in tumor biology. However, their function as ion channels at the plasma membrane does not totally explain their crucial role in tumors. Both in native and heterologous systems, it has been observed that a majority of KV10.1 channels remain at intracellular locations. In this study we investigated the localization and possible roles of perinuclear KV10.1. We show that KV10.1 is expressed at the inner nuclear membrane in both human and rat models; it co-purifies with established inner nuclear membrane markers, shows resistance to detergent extraction and restricted mobility, all of them typical features of proteins at the inner nuclear membrane. KV10.1 channels at the inner nuclear membrane are not all transported directly from the ER but rather have been exposed to the extracellular milieu. Patch clamp experiments on nuclei devoid of external nuclear membrane reveal the existence of channel activity compatible with KV10.1. We hypothesize that KV10.1 channels at the nuclear envelope might participate in the homeostasis of nuclear K+, or indirectly interact with heterochromatin, both factors known to affect gene expression
- …
