376 research outputs found

    Synthesis and electronic properties of Ruddlesden-Popper strontium iridate epitaxial thin films stabilized by control of growth kinetics

    Full text link
    We report on the selective fabrication of high-quality Sr2_2IrO4_4 and SrIrO3_3 epitaxial thin films from a single polycrystalline Sr2_2IrO4_4 target by pulsed laser deposition. Using a combination of X-ray diffraction and photoemission spectroscopy characterizations, we discover that within a relatively narrow range of substrate temperature, the oxygen partial pressure plays a critical role in the cation stoichiometric ratio of the films, and triggers the stabilization of different Ruddlesden-Popper (RP) phases. Resonant X-ray absorption spectroscopy measurements taken at the Ir LL-edge and the O KK-edge demonstrate the presence of strong spin-orbit coupling, and reveal the electronic and orbital structures of both compounds. These results suggest that in addition to the conventional thermodynamics consideration, higher members of the Srn+1_{n+1}Irn_nO3n+1_{3n+1} series can possibly be achieved by kinetic control away from the thermodynamic limit. These findings offer a new approach to the synthesis of ultra-thin films of the RP series of iridates and can be extended to other complex oxides with layered structure.Comment: 7 pages, 6 figure

    Effect of Cr spacer on structural and magnetic properties of Fe/Gd multilayers

    Full text link
    In this work we analyse the role of a thin Cr spacer between Fe and Gd layers on structure and magnetic properties of a [Fe(35A)/Cr(tCr)/Gd(50A)/Cr(tCr)]x12 superlattice. Samples without the Cr spacer (tCr=0) and with a thin tCr=4A are investigated using X-ray diffraction, polarized neutron and resonance X-ray magnetic reflectometry, SQUID magnetometery, magneto-optical Kerr effect and ferromagnetic resonance techniques. Magnetic properties are studied experimentally in a wide temperature range 4-300K and analysed theoretically using numerical simulation on the basis of the mean-field model. We show that a reasonable agreement with the experimental data can be obtained considering temperature dependence of the effective field parameter in gadolinium layers. The analysis of the experimental data shows that besides a strong reduction of the antiferromagnetic coupling between Fe and Gd, the introduction of Cr spacers into Fe/Gd superlattice leads to modification of both structural and magnetic characteristics of the ferromagnetic layers

    EXAFS study of lead-free relaxor ferroelectric BaTi(1-x)Zr(x)O3 at the Zr K-edge

    Full text link
    Extended X-ray absorption fine structure (EXAFS) experiments at the Zr K-edge were carried out on perovskite relaxor ferroelectrics BaTi(1-x)Zr(x)O3 (BTZ) (x = 0.25, 0.30, 0.35), and on BaZrO3 for comparison. Structural information up to 4.5 A around the Zr atoms is obtained, revealing that the local structure differs notably from the average Pm-3m cubic structure deduced from X-ray diffraction. In particular, our results show that the distance between Zr atoms and their first oxygen neighbors is independent of the Zr substitution rate x and equal to that measured in BaZrO3, while the X-ray cubic cell parameter increases linearly with x. Furthermore, we show that the Zr atoms tend to segregate in Zr-rich regions. We propose that the relaxor behavior in BTZ is linked to random elastic fields generated by this particular chemical arrangement, rather than to random electric fields as is the case in most relaxors.Comment: 13 pages, 12 figures, 4 tables. Submitted to Phys. Rev.

    A 4-unit-cell superstructure in optimally doped YBa2Cu3O6.92 superconductor

    Full text link
    Using high-energy diffraction we show that a 4-unit-cell superstructure, q0=(1/4,0,0), along the shorter Cu-Cu bonds coexists with superconductivity in optimally doped YBCO. A complex set of anisotropic atomic displacements on neighboring CuO chain planes, BaO planes, and CuO2 planes, respectively, correlated over ~3-6 unit cells gives rise to diffuse superlattice peaks. Our observations are consistent with the presence of Ortho-IV nanodomains containing these displacements.Comment: Corrected typo in abstrac

    Theory of Room Temperature Ferromagnet V(TCNE)_x (1.5 < x < 2): Role of Hidden Flat Bands

    Full text link
    Theoretical studies on the possible origin of room temperature ferromagnetism (ferromagnetic once crystallized) in the molecular transition metal complex, V(TCNE)_x (1.5<x<2) have been carried out. For this family, there have been no definite understanding of crystal structure so far because of sample quality, though the effective valence of V is known to be close to +2. Proposing a new crystal structure for the stoichiometric case of x=2, where the valence of each TCNE molecule is -1 and resistivity shows insulating behavior, exchange interaction among d-electrons on adjacent V atoms has been estimated based on the cluster with 3 vanadium atoms and one TCNE molecule. It turns out that Hund's coupling among d orbitals within the same V atoms and antiferromagnetic coupling between d oribitals and LUMO of TCNE (bridging V atoms) due to hybridization result in overall ferromagnetism (to be precise, ferrimagnetism). This view based on localized electrons is supplemented by the band picture, which indicates the existence of a flat band expected to lead to ferromagnetism as well consistent with the localized view. The off-stoichiometric cases (x<2), which still show ferromagnetism but semiconducting transport properties, have been analyzed as due to Anderson localization.Comment: Accepted for publication in J. Phys. Soc. Jpn. Vol.79 (2010), No. 3 (March issue), in press; 6 pages, 8 figure

    Charge-Stripe Ordering From Local Octahedral Tilts: Underdoped and Superconducting La2-xSrxCuO4 (0 < x < 0.30)

    Full text link
    The local structure of La2-xSrxCuO4, for 0 < x < 0.30, has been investigated using the atomic pair distribution function (PDF) analysis of neutron powder diffraction data. The local octahedral tilts are studied to look for evidence of [110] symmetry (i.e., LTT-symmetry) tilts locally, even though the average tilts have [010] symmetry (i.e., LTO-symmetry) in these compounds. We argue that this observation would suggest the presence of local charge-stripe order. We show that the tilts are locally LTO in the undoped phase, in agreement with the average crystal structure. At non-zero doping the PDF data are consistent with the presence of local tilt disorder in the form of a mixture of LTO and LTT local tilt directions and a distribution of local tilt magnitudes. We present topological tilt models which qualitatively explain the origin of tilt disorder in the presence of charge stripes and show that the PDF data are well explained by such a mixture of locally small and large amplitude tilts.Comment: 11 two-column pages, 11 figure

    Incommensurate lattice distortion in the high temperature tetragonal phase of La2x_{2-x}(Sr,Ba)x_{x}CuO4_{4}

    Full text link
    We report incommensurate diffuse (ICD) scattering appearing in the high-temperature-tetragonal (HTT) phase of La2x_{2-x}(Sr,Ba)x_{x}CuO4_{4} with 0.07x0.200.07 \leq x \leq 0.20 observed by the neutron diffraction technique. For all compositions, a sharp superlattice peak of the low-temperature-orthorhombic (LTO) structure is replaced by a pair of ICD peaks with the modulation vector parallel to the CuO6_6 octahedral tilting direction, that is, the diagonal Cu-Cu direction of the CuO2_2 plane, above the LTO-HTT transition temperature TsT_s. The temperature dependences of the incommensurability δ\delta for all samples scale approximately as T/TsT/T_s, while those of the integrated intensity of the ICD peaks scale as (TTs)1(T-T_s)^{-1}. These observations together with absence of ICD peaks in the non-superconducting x=0.05x=0.05 sample evince a universal incommensurate lattice instability of hole-doped 214 cuprates in the superconducting regime.Comment: 6 pages, 6 figure
    corecore