1,528 research outputs found
Cockpit simulation study of use of flight path angle for instrument approaches
The results of a piloted simulation experiment to evaluate the effect of integrating flight path angle information into a typical transport electronic attitude director indicator display format for flight director instrument landing system approaches are presented. Three electronic display formats are evaluated during 3 deg straight-in approaches with wind shear and turbulence conditions. Flight path tracking data and pilot subjective comments are analyzed with regard to the pilot's tracking performance and workload for all three display formats
IVOA Recommendation: VOTable Format Definition Version 1.3
This document describes the structures making up the VOTable standard. The
main part of this document describes the adopted part of the VOTable standard;
it is followed by appendices presenting extensions which have been proposed
and/or discussed, but which are not part of the standard
Towards a Notion of Distributed Time for Petri Nets
We set the ground for research on a timed extension of Petri nets where time parameters are associated with tokens and arcs carry constraints that qualify the age of tokens required for enabling. The novelty is that, rather than a single global clock, we use a set of unrelated clocks --- possibly one per place --- allowing a local timing as well as distributed time synchronisation. We give a formal definition of the model and investigate properties of local versus global timing, including decidability issues and notions of processes of the respective models
Chiral Asymmetry and the Spectral Action
We consider orthogonal connections with arbitrary torsion on compact
Riemannian manifolds. For the induced Dirac operators, twisted Dirac operators
and Dirac operators of Chamseddine-Connes type we compute the spectral action.
In addition to the Einstein-Hilbert action and the bosonic part of the Standard
Model Lagrangian we find the Holst term from Loop Quantum Gravity, a coupling
of the Holst term to the scalar curvature and a prediction for the value of the
Barbero-Immirzi parameter
Lattice dependence of saturated ferromagnetism in the Hubbard model
We investigate the instability of the saturated ferromagnetic ground state
(Nagaoka state) in the Hubbard model on various lattices in dimensions d=2 and
d=3. A variational resolvent approach is developed for the Nagaoka instability
both for U = infinity and for U < infinity which can easily be evaluated in the
thermodynamic limit on all common lattices. Our results significantly improve
former variational bounds for a possible Nagaoka regime in the ground state
phase diagram of the Hubbard model. We show that a pronounced particle-hole
asymmetry in the density of states and a diverging density of states at the
lower band edge are the most important features in order to stabilize Nagaoka
ferromagnetism, particularly in the low density limit.Comment: Revtex, 18 pages with 18 figures, 7 pages appendices, section on bcc
lattice adde
The Energy Spectrum of Primary Cosmic Ray Electrons in Clusters of Galaxies and Inverse Compton Emission
Models for the evolution of the integrated energy spectrum of primary cosmic
ray electrons in clusters of galaxies have been calculated, including the
effects of losses due to inverse Compton (IC), synchrotron, and bremsstrahlung
emission, and Coulomb losses to the intracluster medium (ICM). The combined
time scale for these losses reaches a maximum of ~3e9 yr for electrons with a
Lorentz factor ~300. Only clusters in which there has been a substantial
injection of relativistic electrons since z <~ 1 will have any significant
population of primary cosmic ray electrons at present. In typical models, there
is a broad peak in the electron energy distribution extending to gamma~300, and
a steep drop in the electron population beyond this. In clusters with current
particle injection, there is a power-law tail of higher energy electrons with
an abundance determined by the current rate of injection. A significant
population of electrons with gamma~300, associated with the peak in the
particle loss time, is a generic feature of the models. The IC and synchrotron
emission from these models was calculated. In the models, EUV and soft X-ray
emission are nearly ubiquitous. This emission is produced by electrons with
gamma~300. The spectra are predicted to drop rapidly in going from the EUV to
the X-ray band. The IC emission also extends down the UV, optical, and IR bands
with a fairly flat spectrum. Hard X-ray (HXR) and diffuse radio emission due to
high energy electrons (gamma~10e4) is present only in clusters which have
current particle acceleration. Assuming that the electrons are accelerated in
ICM shocks, one would only expect diffuse HXR/radio emission in clusters which
are currently undergoing a large merger.Comment: Accepted for publication in the Astrophysical Journal, with minor
revisons to wording for clarity and one additional reference. 19 pages with
16 embedded Postscript figures in emulateapj.sty. Abbreviated abstract belo
Magnetic Field Evolution in Merging Clusters of Galaxies
We present initial results from the first 3-dimensional numerical
magnetohydrodynamical (MHD) simulations of magnetic field evolution in merging
clusters of galaxies. Within the framework of idealized initial conditions
similar to our previous work, we look at the gasdynamics and the magnetic field
evolution during a major merger event in order to examine the suggestion that
shocks and turbulence generated during a cluster/subcluster merger can produce
magnetic field amplification and relativistic particle acceleration and, as
such, may play a role in the formation and evolution of cluster-wide radio
halos. The ICM, as represented by the equations of ideal MHD, is evolved
self-consistently within a changing gravitational potential defined largely by
the collisionless dark matter component represented by an N-body particle
distribution. The MHD equations are solved by the Eulerian, finite-difference
code, ZEUS. The particles are evolved by a standard particle-mesh (PM) code. We
find significant evolution of the magnetic field structure and strength during
two distinct epochs of the merger evolution.Comment: 21 pages, 7 figures, Figure 2 is color postscript. Accepted for
publication in Ap
The breakdown of the Nagaoka phase in the 2D t-J model
In the limit of weak exchange, J, at low hole concentration, the ground state
of the 2D t-J model is believed to be ferromagnetic. We study the leading
instability of this Nagaoka state, which emerges with increasing J. Both exact
diagonalization of small clusters, and a semiclassical analytical calculation
of larger systems show that above a certain critical value of the exchange,
Nagaoka's state is unstable to phase separation. In a finite-size system a
bubble of antiferromagnetic Mott insulator appears in the ground state above
this threshold. The size of this bubble depends on the hole concentration and
scales as a power of the system size, N
Increased vulnerability of COPD patient groups to urban climate in view of global warming
Purpose: Patients with COPD show an increase in acute exacerbations (AECOPD) during the cold season as well as during heat waves in the summer months. Due to global climate changes, extreme weather conditions are likely to occur more frequently in the future. The goal of this study was to identify patient groups most at risk of exacerbations during the four seasons of the year and to determine at which temperature threshold the daily hospital admissions due to AECOPD increase during the summer. Patients and methods: We analyzed retrospective demographic and medical data of 990 patients, who were hospitalized for AECOPD in Berlin, Germany. The cases were grouped into the following cohorts: "spring" (admission between March and May), "summer" (June August), "autumn" (September - November), and "winter" (December - February). AECOPD hospital admissions from 2006 and 2010 were grouped into a "hot summer" cohort and cases from 2011 and 2012 into a "cold summer" data-set. Climate data were obtained from the German Meteorological Office. Results: Patients hospitalized for a COPD exacerbation during winter were significantly older than summertime patients (P=0.040) and also thinner than patients exacerbating in spring (P=0.042). COPD exacerbations during hot summer periods happened more often to patients with a history of myocardial infarction (P=0.014) or active smokers (P=0.011). An AECOPD during colder summers occurred in patients with a higher Charlson index, who suffered in increased numbers from peripheral vascular diseases (P=0.016) or tumors (P=0.004). Summertime hospital admissions increased above a daily minimum temperature of 18.3 degrees C (P=0.006). Conclusion: The identification of COPD patient groups most at risk for climate related exacerbations enables climate-adapted prevention through patient guidance and treatment. In view of global climate changes, discovering vulnerabilities and implementing adaptive measures will be of growing importance
- …
