323 research outputs found

    Temperature-dependent contact resistances in high-quality polymer field-effect transistors

    Full text link
    Contact resistances between organic semiconductors and metals can dominate the transport properties of electronic devices incorporating such materials. We report measurements of the parasitic contact resistance and the true channel resistance in bottom contact poly(3-hexylthiophene) (P3HT) field-effect transistors with channel lengths from 400 nm up to 40 ÎĽ\mum, from room temperature down to 77 K. For fixed gate voltage, the ratio of contact to channel resistance decreases with decreasing temperature. We compare this result with a recent model for metal-organic semiconductor contacts. Mobilities corrected for this contact resistance can approach 1 cm2^{2}/Vs at room temperature and high gate voltages.Comment: 10 pages, 4 figures, accepted to Appl. Phys. Let

    Nonlinear charge injection in organic field-effect transistors

    Full text link
    Transport properties of a series of poly(3-hexylthiophene) organic field effect transistors with Cr, Cu and Au source/drain electrodes were examined over a broad temperature range. The current-voltage characteristics of the injecting contacts are extracted from the dependence of conductance on channel length. With reasonable parameters, a model of hopping injection into a disordered density of localized states, with emphasis on the primary injection event, agrees well with the field and the temperature dependence of the data over a broad range of temperatures and gate voltages.Comment: 7 pages, 7 figures, sub. to J. Appl. Phy

    Gated nonlinear transport in organic polymer field effect transistors

    Full text link
    We measure hole transport in poly(3-hexylthiophene) field effect transistors with channel lengths from 3 ÎĽ\mum down to 200 nm, from room temperature down to 10 K. Near room temperature effective mobilities inferred from linear regime transconductance are strongly dependent on temperature, gate voltage, and source-drain voltage. As TT is reduced below 200 K and at high source-drain bias, we find transport becomes highly nonlinear and is very strongly modulated by the gate. We consider whether this nonlinear transport is contact limited or a bulk process by examining the length dependence of linear conduction to extract contact and channel contributions to the source-drain resistance. The results indicate that these devices are bulk-limited at room temperature, and remain so as the temperature is lowered. The nonlinear conduction is consistent with a model of Poole-Frenkel-like hopping mechanism in the space-charge limited current regime. Further analysis within this model reveals consistency with a strongly energy dependent density of (localized) valence band states, and a crossover from thermally activated to nonthermal hopping below 30 K.Comment: 22 pages, 7 figures, accepted to J. Appl. Phy

    Doping dependent charge injection and band alignment in organic field-effect transistors

    Full text link
    We have studied metal/organic semiconductor charge injection in poly(3-hexylthiophene) (P3HT) field-effect transistors with Pt and Au electrodes as a function of annealing in vacuum. At low impurity dopant densities, Au/P3HT contact resistances increase and become nonohmic. In contrast, Pt/P3HT contacts remain ohmic even at far lower doping. Ultraviolet photoemission spectroscopy (UPS) reveals that metal/P3HT band alignment shifts dramatically as samples are dedoped, leading to an increased injection barrier for holes, with a greater shift for Au/P3HT. These results demonstrate that doping can drastically alter band alignment and the charge injection process at metal/organic interfaces.Comment: 5 pages, 4 figure

    Extracting contact effects in organic field-effect transistors

    Full text link
    Contact resistances between organic semiconductors and metal electrodes have been shown to play a dominant role in electronic charge injection properties of organic field-effect transistors. These effects are more prevalent in short channel length devices and therefore should not be ignored when examining intrinsic properties such as the mobility and its dependence on temperature or gate voltage. Here we outline a general procedure to extract contact current-voltage characteristics and the true channel mobility from the transport characteristics in bottom contact poly(3-hexylthiophene) field-effect transistors, for both Ohmic and nonlinear charge injection, over a broad range of temperatures and gate voltages. Distinguishing between contact and channel contributions in bottom contact OFETs is an important step toward improved understanding and modeling of these devices.Comment: 7 pages, 8 figures. To appear in July 2005 Proc. of the IEEE, Special Issue on Flexible Electronic

    Controlling charge injection in organic field-effect transistors using self-assembled monolayers

    Get PDF
    We have studied charge injection across the metal/organic semiconductor interface in bottom-contact poly(3-hexylthiophene) (P3HT) field-effect transistors, with Au source and drain electrodes modified by self-assembled monolayers (SAMs) prior to active polymer deposition. By using the SAM to engineer the effective Au work function, we markedly affect the charge injection process. We systematically examine the contact resistivity and intrinsic channel mobility, and show that chemically increasing the injecting electrode work function significantly improves hole injection relative to untreated Au electrodes.Comment: 5 pages, 2 figures. Supplementary information available upon reques

    Interfacial charge transfer in nanoscale polymer transistors

    Get PDF
    Interfacial charge transfer plays an essential role in establishing the relative alignment of the metal Fermi level and the energy bands of organic semiconductors. While the details remain elusive in many systems, this charge transfer has been inferred in a number of photoemission experiments. We present electronic transport measurements in very short channel (L<100L < 100 nm) transistors made from poly(3-hexylthiophene) (P3HT). As channel length is reduced, the evolution of the contact resistance and the zero-gate-voltage conductance are consistent with such charge transfer. Short channel conduction in devices with Pt contacts is greatly enhanced compared to analogous devices with Au contacts, consistent with charge transfer expectations. Alternating current scanning tunneling microscopy (ACSTM) provides further evidence that holes are transferred from Pt into P3HT, while much less charge transfer takes place at the Au/P3HT interface.Comment: 19 preprint pages, 6 figure

    Allogeneic hematopoietic cell transplantation as curative therapy for patients with non-Hodgkin lymphoma: Increasingly successful application to older patients

    Get PDF
    AbstractNon-Hodgkin lymphoma (NHL) constitutes a collection of lymphoproliferative disorders with widely varying biological, histological, and clinical features. For the B cell NHLs, great progress has been made due to the addition of monoclonal antibodies and, more recently, other novel agents including B cell receptor signaling inhibitors, immunomodulatory agents, and proteasome inhibitors. Autologous hematopoietic cell transplantation (auto-HCT) offers the promise of cure or prolonged remission in some NHL patients. For some patients, however, auto-HCT may never be a viable option, whereas in others, the disease may progress despite auto-HCT. In those settings, allogeneic HCT (allo-HCT) offers the potential for cure. Over the past 10 to 15 years, considerable progress has been made in the implementation of allo-HCT, such that this approach now is a highly effective therapy for patients up to (and even beyond) age 75 years. Recent advances in conventional lymphoma therapy, peritransplantation supportive care, patient selection, and donor selection (including the use of alternative hematopoietic cell donors), has allowed broader application of allo-HCT to patients with NHL. As a result, an ever-increasing number of NHL patients over age 60 to 65 years stand to benefit from allo-HCT. In this review, we present data in support of the use of allo-HCT for patients with diffuse large B cell lymphoma, follicular lymphoma, and mantle cell lymphoma. These histologies account for a large majority of allo-HCTs performed for patients over age 60 in the United States. Where possible, we highlight available data in older patients. This body of literature strongly supports the concept that allo-HCT should be offered to fit patients well beyond age 65 and, accordingly, that this treatment should be covered by their insurance carriers

    Sex differences in the influence of body mass index on anatomical architecture of brain networks.

    Get PDF
    Background/objectivesThe brain has a central role in regulating ingestive behavior in obesity. Analogous to addiction behaviors, an imbalance in the processing of rewarding and salient stimuli results in maladaptive eating behaviors that override homeostatic needs. We performed network analysis based on graph theory to examine the association between body mass index (BMI) and network measures of integrity, information flow and global communication (centrality) in reward, salience and sensorimotor regions and to identify sex-related differences in these parameters.Subjects/methodsStructural and diffusion tensor imaging were obtained in a sample of 124 individuals (61 males and 63 females). Graph theory was applied to calculate anatomical network properties (centrality) for regions of the reward, salience and sensorimotor networks. General linear models with linear contrasts were performed to test for BMI and sex-related differences in measures of centrality, while controlling for age.ResultsIn both males and females, individuals with high BMI (obese and overweight) had greater anatomical centrality (greater connectivity) of reward (putamen) and salience (anterior insula) network regions. Sex differences were observed both in individuals with normal and elevated BMI. In individuals with high BMI, females compared to males showed greater centrality in reward (amygdala, hippocampus and nucleus accumbens) and salience (anterior mid-cingulate cortex) regions, while males compared to females had greater centrality in reward (putamen) and sensorimotor (posterior insula) regions.ConclusionsIn individuals with increased BMI, reward, salience and sensorimotor network regions are susceptible to topological restructuring in a sex-related manner. These findings highlight the influence of these regions on integrative processing of food-related stimuli and increased ingestive behavior in obesity, or in the influence of hedonic ingestion on brain topological restructuring. The observed sex differences emphasize the importance of considering sex differences in obesity pathophysiology

    Effects of a community-based approach of food and psychosocial stimulation on growth and development of severely malnourished children in Bangladesh: a randomised trial.

    Get PDF
    BACKGROUND/OBJECTIVE: Psychosocial stimulation (PS) and food supplementation (FS) improve development of malnourished children. This study evaluates the effects of a community-based approach of PS and FS on growth and development of severely malnourished children. SUBJECTS/METHODS: Severely underweight hospitalised children aged 6-24 months (n = 507) were randomly allocated on discharge to five groups: (i) PS, (ii) FS, (iii) PS+FS, (iv) clinic-control and (v) hospital-control. PS included play sessions and parental counselling on child development. This was done at each fortnightly follow-up visit, that is, every second week, for 6 months at community clinics. FS included distribution of cereal-based food packets (150-300 kcal/day) for 3 months. All groups received medical care, micronutrient supplementation, health-education and growth monitoring. Children's development was assessed using revised version of Bayley Scales of Infant Development at baseline and after 3 and 6 months of intervention. Anthropometry was measured using standard procedure. RESULTS: Comparing groups with any stimulation with those with no stimulation there was a significant effect of stimulation on children's mental development index (group*session interaction P = 0.037, effect size = 0.37 s.d.) and weight-for-age Z-score (group*session interaction P = 0.02, effect size=0.26 s.d.). Poor levels of development and nutritional status were sustained, however, due to their initial very severe malnutrition. There was no effect on motor development and linear growth. CONCLUSION: Children receiving any stimulation showed a significant benefit to mental development and growth in weight. More intensive intervention with longer duration is needed to correct their poor developmental levels and nutritional status
    • …
    corecore