12 research outputs found

    Translational models for vascular cognitive impairment: a review including larger species.

    Get PDF
    BACKGROUND: Disease models are useful for prospective studies of pathology, identification of molecular and cellular mechanisms, pre-clinical testing of interventions, and validation of clinical biomarkers. Here, we review animal models relevant to vascular cognitive impairment (VCI). A synopsis of each model was initially presented by expert practitioners. Synopses were refined by the authors, and subsequently by the scientific committee of a recent conference (International Conference on Vascular Dementia 2015). Only peer-reviewed sources were cited. METHODS: We included models that mimic VCI-related brain lesions (white matter hypoperfusion injury, focal ischaemia, cerebral amyloid angiopathy) or reproduce VCI risk factors (old age, hypertension, hyperhomocysteinemia, high-salt/high-fat diet) or reproduce genetic causes of VCI (CADASIL-causing Notch3 mutations). CONCLUSIONS: We concluded that (1) translational models may reflect a VCI-relevant pathological process, while not fully replicating a human disease spectrum; (2) rodent models of VCI are limited by paucity of white matter; and (3) further translational models, and improved cognitive testing instruments, are required

    Reduced cortical microvascular oxygenation in multiple sclerosis: a blinded, case-controlled study using a novel quantitative near-infrared spectroscopy method

    No full text
    Hypoxia (low oxygen) is associated with many brain disorders as well as inflammation, but the lack of widely available technology has limited our ability to study hypoxia in human brain. Multiple sclerosis (MS) is a poorly understood neurological disease with a significant inflammatory component which may cause hypoxia. We hypothesized that if hypoxia were to occur, there should be reduced microvascular hemoglobin saturation (S(t)O(2)). In this study, we aimed to determine if reduced S(t)O(2) can be detected in MS using frequency domain near-infrared spectroscopy (fdNIRS). We measured fdNIRS data in cortex and assessed disability of 3 clinical isolated syndrome (CIS), 72 MS patients and 12 controls. Control S(t)O(2) was 63.5 ± 3% (mean ± SD). In MS patients, 42% of S(t)O(2) values were more than 2 × SD lower than the control mean. There was a significant relationship between S(t)O(2) and clinical disability. A reduced microvascular S(t)O(2) is supportive (although not conclusive) that there may be hypoxic regions in MS brain. This is the first study showing how quantitative NIRS can be used to detect reduced S(t)O(2) in patients with MS, opening the door to understanding how microvascular oxygenation impacts neurological conditions

    Is there any influence of breastfeeding on the cerebral blood flow? A review of 256 healthy newborns

    No full text
    OBJECTIVE: To investigate whether breastfeeding influence the cerebral blood-flow velocity. MATERIALS AND METHODS: The present study included 256 healthy term neonates, all of them with appropriate weight for gestational age, 50.8% being female. Pulsatility index, resistance index and mean velocity were measured during breastfeeding or resting in the anterior cerebral artery, in the left middle cerebral artery, and in the right middle cerebral artery of the neonates between their first 10 and 48 hours of life. The data were analyzed by means of a paired t-test, Brieger's f-test for analysis of variance and linear regression, with p < 0.01 being accepted as statistically significant. RESULTS: Mean resistance index decreased as the mean velocity increased significantly during breastfeeding. Pulsatility index values decreased as much as the resistance index, but in the right middle cerebral artery it was not statistically significant. CONCLUSION: Breastfeeding influences the cerebral blood flow velocities

    Mapping distributed brain function and networks with diffuse optical tomography

    No full text
    Mapping of human brain function has revolutionized systems neuroscience. However, traditional functional neuroimaging by positron emission tomography or functional magnetic resonance imaging cannot be used when applications require portability, or are contraindicated because of ionizing radiation (positron emission tomography) or implanted metal (functional magnetic resonance imaging). Optical neuroimaging offers a non-invasive alternative that is radiation free and compatible with implanted metal and electronic devices (for example, pacemakers). However, optical imaging technology has heretofore lacked the combination of spatial resolution and wide field of view sufficient to map distributed brain functions. Here, we present a high-density diffuse optical tomography imaging array that can map higher-order, distributed brain function. The system was tested by imaging four hierarchical language tasks and multiple resting-state networks including the dorsal attention and default mode networks. Finally, we imaged brain function in patients with Parkinson’s disease and implanted deep brain stimulators that preclude functional magnetic resonance imaging
    corecore