1,268 research outputs found
Comparison of the Inverse Probability of Treatment Weighted (IPTW) Estimator With a Naïve Estimator in the Analysis of Longitudinal Data With Time-Dependent Confounding: A Simulation Study
A simulation study was conducted to compare estimates from a naïve estimator, using standard conditional regression, and an IPTW (Inverse Probability of Treatment Weighted) estimator, to true causal parameters for a given MSM (Marginal Structural Model). The study was extracted from a larger epidemiological study (Longitudinal Study of Effects of Physical Activity and Body Composition on Functional Limitation in the Elderly, by Tager et. al [accepted, Epidemiology, September 2003]), which examined the causal effects of physical activity and body composition on functional limitation. The simulation emulated the larger study in terms of the exposure and outcome variables of interest-- physical activity (LTPA), body composition (LNFAT), and physical limitation (PF), but used one time-dependent confounder (HEALTH) to illustrate the effects of estimating causal effects in the presence of time-dependent confounding. In addition to being a time-dependent confounder (i.e. predictor of exposure and outcome over time), HEALTH was also affected by past treatment. Under these conditions, naïve estimates are known to give biased estimates of the causal effects of interest (Robins, 2000). The true causal parameters for LNFAT (-0.61) and LTPA (-0.70) were obtained by assessing the log-odds of functional limitation for a 1-unit increase in LNFAT and participation in vigorous exercise in an ideal experiment in which the counterfactual outcomes were known for every possible combination of LNFAT and LTPA for each subject. Under conditions of moderate confounding, the IPTW estimates for LNFAT and LTPA were -0.62 and -0.94, respectively, versus the naïve estimates of -0.78 and -0.80. For increased levels of confounding of the LNFAT and LTPA variables, the IPTW estimates were -0.60 and -1.28, respectively, and the naïve estimates were -0.85 and -0.87. The bias of the IPTW estimates, particularly under increased levels of confounding, was explored and linked to violation of particular assumptions regarding the IPTW estimation of causal parameters for the MSM
The 14C(n,g) cross section between 10 keV and 1 MeV
The neutron capture cross section of 14C is of relevance for several
nucleosynthesis scenarios such as inhomogeneous Big Bang models, neutron
induced CNO cycles, and neutrino driven wind models for the r process. The
14C(n,g) reaction is also important for the validation of the Coulomb
dissociation method, where the (n,g) cross section can be indirectly obtained
via the time-reversed process. So far, the example of 14C is the only case with
neutrons where both, direct measurement and indirect Coulomb dissociation, have
been applied. Unfortunately, the interpretation is obscured by discrepancies
between several experiments and theory. Therefore, we report on new direct
measurements of the 14C(n,g) reaction with neutron energies ranging from 20 to
800 keV
Recommended from our members
Atomic layer deposition of Al-incorporated Zn(O,S) thin films with tunable electrical properties
Zinc oxysulfide, Zn(O,S), films grown by atomic layer deposition were incorporated with aluminum to adjust the carrier concentration. The electron carrier concentration increased up to one order of magnitude from 1019 to 1020 cm−3 with aluminum incorporation and sulfur content in the range of 0 ≤ S/(Zn+Al) ≤ 0.16. However, the carrier concentration decreased by five orders of magnitude from 1019 to 1014 cm−3 for S/(Zn+Al) = 0.34 and decreased even further when S/(Zn+Al) > 0.34. Such tunable electrical properties are potentially useful for graded buffer layers in thin-film photovoltaic applications.Chemistry and Chemical Biolog
Impaired Competence for Pretense in Children with Autism: Exploring Potential Cognitive Predictors.
Lack of pretense in children with autism has been explained by a number of theoretical explanations, including impaired mentalising, impaired response inhibition, and weak central coherence. This study aimed to empirically test each of these theories. Children with autism (n=60) were significantly impaired relative to controls (n=65) when interpreting pretense, thereby supporting a competence deficit hypothesis. They also showed impaired mentalising and response inhibition, but superior local processing indicating weak central coherence. Regression analyses revealed that mentalising significantly and independently predicted pretense. The results are interpreted as supporting the impaired mentalising theory and evidence against competing theories invoking impaired response inhibition or a local processing bias. The results of this study have important implications for treatment and intervention
Modeling bursts and heavy tails in human dynamics
Current models of human dynamics, used from risk assessment to
communications, assume that human actions are randomly distributed in time and
thus well approximated by Poisson processes. We provide direct evidence that
for five human activity patterns the timing of individual human actions follow
non-Poisson statistics, characterized by bursts of rapidly occurring events
separated by long periods of inactivity. We show that the bursty nature of
human behavior is a consequence of a decision based queuing process: when
individuals execute tasks based on some perceived priority, the timing of the
tasks will be heavy tailed, most tasks being rapidly executed, while a few
experiencing very long waiting times. We discuss two queueing models that
capture human activity. The first model assumes that there are no limitations
on the number of tasks an individual can hadle at any time, predicting that the
waiting time of the individual tasks follow a heavy tailed distribution with
exponent alpha=3/2. The second model imposes limitations on the queue length,
resulting in alpha=1. We provide empirical evidence supporting the relevance of
these two models to human activity patterns. Finally, we discuss possible
extension of the proposed queueing models and outline some future challenges in
exploring the statistical mechanisms of human dynamics.Comment: RevTex, 19 pages, 8 figure
Energy measurement of prompt fission neutrons in 239Pu(n,f) for incident neutron energies from 1 to 200 MeV
Prompt fission neutron spectra in the neutron-induced fission of 239Pu have been measured for incident neutron energies from 1 to 200 MeV at the Los Alamos Neutron Science Center. Preliminary results are discussed and compared to theoretical model calculation
Direct measurement of stellar neutron capture rates of and comparison with the Coulomb breakup method
Hole dynamics in noble metals
We present a detailed analysis of hole dynamics in noble metals (Cu and Au),
by means of first-principles many-body calculations. While holes in a
free-electron gas are known to live shorter than electrons with the same
excitation energy, our results indicate that d-holes in noble metals exhibit
longer inelastic lifetimes than excited sp-electrons, in agreement with
experiment. The density of states available for d-hole decay is larger than
that for the decay of excited electrons; however, the small overlap between d-
and sp-states below the Fermi level increases the d-hole lifetime. The impact
of d-hole dynamics on electron-hole correlation effects, which are of relevance
in the analysis of time-resolved two-photon photoemission experiments, is also
addressed.Comment: 4 pages, 2 figures, to appear in Phys. Rev. Let
- …
