2,405 research outputs found

    Multifractality and intermediate statistics in quantum maps

    Full text link
    We study multifractal properties of wave functions for a one-parameter family of quantum maps displaying the whole range of spectral statistics intermediate between integrable and chaotic statistics. We perform extensive numerical computations and provide analytical arguments showing that the generalized fractal dimensions are directly related to the parameter of the underlying classical map, and thus to other properties such as spectral statistics. Our results could be relevant for Anderson and quantum Hall transitions, where wave functions also show multifractality.Comment: 4 pages, 4 figure

    Application of serious games to sport, health and exercise

    Get PDF
    Use of interactive entertainment has been exponentially expanded since the last decade. Throughout this 10+ year evolution there has been a concern about turning entertainment properties into serious applications, a.k.a "Serious Games". In this article we present two set of Serious Game applications, an Environment Visualising game which focuses solely on applying serious games to elite Olympic sport and another set of serious games that incorporate an in house developed proprietary input system that can detect most of the human movements which focuses on applying serious games to health and exercise

    Standing Up for Industry Standing in Environmental Regulatory Challenges

    Get PDF
    Article III of the U.S. Constitution limits courts to hearing only cases and controversies. To address this limitation, federal courts have developed the doctrine of standing, which requires a litigant to have suffered a cognizable injury in fact, which was caused by the challenged conduct and that will be redressable by a favorable outcome. Courts have struggled to balance these components and, in practice, different requirements have developed for meeting standing depending on the nature of the case and the type of party bringing suit. This Article explores the U.S. Court of Appeals for the District of Columbia Circuit’s recent decisions in Coalition for Responsible Regulation, Inc. v. EPA, Grocery Manufacturers Ass’n v. EPA, and Alliance of Automobile Manufacturers v. EPA. It argues that the D.C. Circuit’s findings in these cases—that industry petitioners lacked standing to sue—are the result of the court’s overly narrow analysis of EPA rulemakings as individual acts, without regard to the broader effect of the regulatory scheme of which the rulemakings are a part. In so doing, the D.C. Circuit has precluded industry petitioners from accounting for the practical financial harms they have suffered. The authors conclude that the consequence of this narrow review is a higher bar to establish standing for industry petitioners than for environmental plaintiffs. Ultimately, the D.C. Circuit’s decisions raise the specter that a regulatory program that has tangible impacts on a regulated industry will nonetheless be shielded from judicial review

    Entanglement as a signature of quantum chaos

    Get PDF
    We explore the dynamics of entanglement in classically chaotic systems by considering a multiqubit system that behaves collectively as a spin system obeying the dynamics of the quantum kicked top. In the classical limit, the kicked top exhibits both regular and chaotic dynamics depending on the strength of the chaoticity parameter Îş\kappa in the Hamiltonian. We show that the entanglement of the multiqubit system, considered for both bipartite and pairwise entanglement, yields a signature of quantum chaos. Whereas bipartite entanglement is enhanced in the chaotic region, pairwise entanglement is suppressed. Furthermore, we define a time-averaged entangling power and show that this entangling power changes markedly as Îş\kappa moves the system from being predominantly regular to being predominantly chaotic, thus sharply identifying the edge of chaos. When this entangling power is averaged over initial states, it yields a signature of global chaos. The qualitative behavior of this global entangling power is similar to that of the classical Lyapunov exponent.Comment: 8 pages, 8 figure

    Distribution of the spacing between two adjacent avoided crossings

    Full text link
    We consider the frequency at which avoided crossings appear in an energy level structure when an external field is applied to a quantum chaotic system. The distribution of the spacing in the parameter between two adjacent avoided crossings is investigated. Using a random matrix model, we find that the distribution of these spacings is well fitted by a power-law distribution for small spacings. The powers are 2 and 3 for the Gaussian orthogonal ensemble and Gaussian unitary ensemble, respectively. We also find that the distributions decay exponentially for large spacings. The distributions in concrete quantum chaotic systems agree with those of the random matrix model.Comment: 11 page

    Splitting of Andreev levels in a Josephson junction by spin-orbit coupling

    Full text link
    We consider the effect of spin-orbit coupling on the energy levels of a single-channel Josephson junction below the superconducting gap. We investigate quantitatively the level splitting arising from the combined effect of spin-orbit coupling and the time-reversal symmetry breaking by the phase difference between the superconductors. Using the scattering matrix approach we establish a simple connection between the quantum mechanical time delay matrix and the effective Hamiltonian for the level splitting. As an application we calculate the distribution of level splittings for an ensemble of chaotic Josephson junctions. The distribution falls off as a power law for large splittings, unlike the exponentially decaying splitting distribution given by the Wigner surmise -- which applies for normal chaotic quantum dots with spin-orbit coupling in the case that the time-reversal symmetry breaking is due to a magnetic field.Comment: 6 pages, 3 figure

    Classical bifurcations and entanglement in smooth Hamiltonian system

    Get PDF
    We study entanglement in two coupled quartic oscillators. It is shown that the entanglement, as measured by the von Neumann entropy, increases with the classical chaos parameter for generic chaotic eigenstates. We consider certain isolated periodic orbits whose bifurcation sequence affects a class of quantum eigenstates, called the channel localized states. For these states, the entanglement is a local minima in the vicinity of a pitchfork bifurcation but is a local maxima near a anti-pitchfork bifurcation. We place these results in the context of the close connections that may exist between entanglement measures and conventional measures of localization that have been much studied in quantum chaos and elsewhere. We also point to an interesting near-degeneracy that arises in the spectrum of reduced density matrices of certain states as an interplay of localization and symmetry.Comment: 7 pages, 6 figure

    Photocount statistics of chaotic lasers

    Get PDF
    We derive the photocount statistics of the radiation emitted from a chaotic laser resonator in the regime of single-mode lasing. Random spatial variations of the resonator eigenfunctions lead to strong mode-to-mode fluctuations of the laser emission. The distribution of the mean photocount over an ensemble of modes changes qualitatively at the lasing transition, and displays up to three peaks above the lasing threshold

    Density of State in a Complex Random Matrix Theory with External Source

    Full text link
    The density of state for a complex NĂ—NN\times N random matrix coupled to an external deterministic source is considered for a finite N, and a compact expression in an integral representation is obtained.Comment: 7 pages, late

    Anomalous power law of quantum reversibility for classically regular dynamics

    Get PDF
    The Loschmidt Echo M(t) (defined as the squared overlap of wave packets evolving with two slightly different Hamiltonians) is a measure of quantum reversibility. We investigate its behavior for classically quasi-integrable systems. A dominant regime emerges where M(t) ~ t^{-alpha} with alpha=3d/2 depending solely on the dimension d of the system. This power law decay is faster than the result ~ t^{-d} for the decay of classical phase space densities
    • …
    corecore