5,641 research outputs found

    Magnetic anisotropy and magnetoresistance of sputtered [(FeTaN)/(TaN)](n) multilayers

    Full text link
    We studied the in-plane magnetic anisotropy of rf (radio frequency) sputtered [(FeTaN)/(TaN)](n) multilayers synthesized on Si substrates. In the multilayers where n=5, the FeTaN thickness is fixed at 30 nm and the thickness of TaN, t(TaN), is varied from 0 to 6.0 nm, we observed a clear trend that, with increasing t(TaN), the values of coercivity, grain size, and amplitude of maximum magnetoresistance (MR) of the samples all decrease first and then increase after reaching a minimum when t(TaN) is around 2.0-4.0 nm. This trend is also associated with an evolution of in-plane magnetic anisotropy, where the multilayers change from uniaxial anisotropy to biaxial at t(TaN) around 4.0 nm and above. We attribute the phenomena to the interlayer coupling effect of FeTaN films as a function of the coupling layer (TaN) thickness, rather than to the thickness dependence observed in single-layered FeTaN films, where the direction of easy axis switches 90degrees when the film is thicker than 300 nm. The in-plane anisotropy of the [(FeTaN)/(TaN)](n) multilayers also shows signs of oscillation when the number of coupling layers varies. The MR effects observed are mainly due to anisotropy MR (AMR), while the grain size and exchange coupling may also contribute to the change of maximum MR ratios in the multilayers with changing t(TaN)

    Codon 249 mutation of the p53 gene is a rare event in hepatocellular carcinomas from ethnic Chinese in Singapore.

    Get PDF
    The present study characterised p53 mutations in 44 hepatocellular carcinomas (HCCs) from Chinese patients residing in a high-incidence area. Twelve point mutations (27%) were detected in tumour tissues using single-strand conformation polymorphism analysis followed by direct DNA sequencing. Remarkably, no mutations were observed at codon 249. This is in contrast to HCCs from other high HCC incidence areas with endemic aflatoxin exposures, in which codon 249 is a mutational hot spot. It is therefore suggested that risk factors other than dietary exposure to aflatoxin may contribute to the high HCC incidence in Singapore

    Pygmy dipole resonance in 208Pb

    Full text link
    Scattering of protons of several hundred MeV is a promising new spectroscopic tool for the study of electric dipole strength in nuclei. A case study of 208Pb shows that at very forward angles J^pi = 1- states are strongly populated via Coulomb excitation. A separation from nuclear excitation of other modes is achieved by a multipole decomposition analysis of the experimental cross sections based on theoretical angular distributions calculated within the quasiparticle-phonon model. The B(E1) transition strength distribution is extracted for excitation energies up to 9 MeV, i.e., in the region of the so-called pygmy dipole resonance (PDR). The Coulomb-nuclear interference shows sensitivity to the underlying structure of the E1 transitions, which allows for the first time an experimental extraction of the electromagnetic transition strength and the energy centroid of the PDR.Comment: submitted to Phys. Rev.

    Reactive Hall constant of Strongly Correlated Electrons

    Full text link
    The zero-temperature Hall response within tight-binding models of correlated electrons is studied. Using the linear response theory and a linearization in the magnetic field B, a general relation for the reactive (zero frequency) Hall constant in the fast (transport) limit is derived, involving only matrix elements between the lowest excited states at B=0; for noninteracting fermions, the Boltzmann expression is reproduced. For a Fermi liquid with a well defined Fermi surface and linear gapless excitations an analogous expression is found more generally. In the specific case of quasi-one-dimensional correlated systems a relation of RH0R^0_H to the charge stiffness D is recovered. Similar analysis is performed and discussed for D and the compressibility.Comment: 8 pages, submitted to Phys.Rev.

    Complete electric dipole response and the neutron skin in 208Pb

    Full text link
    A benchmark experiment on 208Pb shows that polarized proton inelastic scattering at very forward angles including 0{\deg} is a powerful tool for high-resolution studies of electric dipole (E1) and spin magnetic dipole (M1) modes in nuclei over a broad excitation energy range to test up-to-date nuclear models. The extracted E1 polarizability leads to a neutron skin thickness r_skin = 0.156+0.025-0.021 fm in 208Pb derived within a mean-field model [Phys. Rev. C 81, 051303 (2010)], thereby constraining the symmetry energy and its density dependence, relevant to the description of neutron stars.Comment: 5 pages, 5 figures, revised mansucrip

    Memory function approach to the Hall constant in strongly correlated electron systems

    Full text link
    The anomalous properties of the Hall constant in the normal state of high-TcT_c superconductors are investigated within the single-band Hubbard model. We argue that the Mori theory is the appropriate formalism to address the Hall constant, since it aims directly at resistivities rather than conductivities. More specifically, the frequency dependent Hall constant decomposes into its infinite frequency limit and a memory function contribution. As a first step, both terms are calculated perturbatively in UU and on an infinite dimensional lattice, where UU is the correlation strength. If we allow UU to be of the order of twice the bare band width, the memory function contribution causes the Hall constant to change sign as a function of doping and to decrease as a function of temperature.Comment: 35 pages, RevTex, 3 ps figures include

    The onset of the vortex-like Nernst signal above Tc in La_{2-x}Sr_xCuO_4 and Bi_2Sr_{2-y}La_yCuO_6

    Full text link
    The diffusion of vortices down a thermal gradient produces a Josephson signal which is detected as the vortex Nernst effect. In a recent report, Xu et al., Nature 406, 486 (2000), an enhanced Nernst signal identified with vortex-like excitations was observed in a series of La_{2-x}Sr_xCuO_4 (LSCO) crystals at temperatures 50-100 K above T_c. To pin down the onset temperature T_{\nu} of the vortex-like signal in the lightly doped regime (0.03 < x < 0.07), we have re-analyzed in detail the carrier contribution to the Nernst signal. By supplementing new Nernst measurements with thermopower and Hall-angle data, we isolate the off-diagonal Peltier conductivity \alpha_{xy} and show that its profile provides an objective determination of T_{\nu}. With the new results, we revise the phase diagram for the fluctuation regime in LSCO to accomodate the lightly doped regime. In the cuprate Bi_2Sr_{2-y}La_yCuO_6, we find that the carrier contribution is virtually negligible for y in the range 0.4-0.6. The evidence for an extended temperature interval with vortex-like excitations is even stronger in this system. Finally, we discuss how T_{\nu} relates to the pseudogap temperature T* and the implications of strong fluctuations between the pseudogap state and the d-wave superconducting state.Comment: 10 pages, 10 figure
    corecore