643 research outputs found

    First Experimental Observation of Superscars in a Pseudointegrable Barrier Billiard

    Full text link
    With a perturbation body technique intensity distributions of the electric field strength in a flat microwave billiard with a barrier inside up to mode numbers as large as about 700 were measured. A method for the reconstruction of the amplitudes and phases of the electric field strength from those intensity distributions has been developed. Recently predicted superscars have been identified experimentally and - using the well known analogy between the electric field strength and the quantum mechanical wave function in a two-dimensional microwave billiard - their properties determined.Comment: 4 pages, 5 .eps figure

    Survey-propagation decimation through distributed local computations

    Full text link
    We discuss the implementation of two distributed solvers of the random K-SAT problem, based on some development of the recently introduced survey-propagation (SP) algorithm. The first solver, called the "SP diffusion algorithm", diffuses as dynamical information the maximum bias over the system, so that variable nodes can decide to freeze in a self-organized way, each variable making its decision on the basis of purely local information. The second solver, called the "SP reinforcement algorithm", makes use of time-dependent external forcing messages on each variable, which let the variables get completely polarized in the direction of a solution at the end of a single convergence. Both methods allow us to find a solution of the random 3-SAT problem in a range of parameters comparable with the best previously described serialized solvers. The simulated time of convergence towards a solution (if these solvers were implemented on a distributed device) grows as log(N).Comment: 18 pages, 10 figure

    Diffusion limited reactions in confined environments

    Full text link
    We study the effect of confinement on diffusion limited bimolecular reactions within a lattice model where a small number of reactants diffuse amongst a much larger number of inert particles. When the number of inert particles is held constant the rate of the reaction is slow for small reaction volumes due to limited mobility from crowding, and for large reaction volumes due to the reduced concentration of the reactants. The reaction rate proceeds fastest at an intermediate confinement corresponding to volume fraction near 1/2 and 1/3 in two and three dimensions, respectively. We generalize the model to off-lattice systems with hydrodynamic coupling and predict that the optimal reaction rate for monodisperse colloidal systems occurs when the volume fraction is ~0.18. Finally, we discuss the application of our model to bimolecular reactions inside cells as well as the dynamics of confined polymers.Comment: 4 pages, 3 figure

    Spectral statistics of chaotic systems with a point-like scatterer

    Full text link
    The statistical properties of a Hamiltonian H0H_0 perturbed by a localized scatterer are considered. We prove that when H0H_0 describes a bounded chaotic motion, the universal part of the spectral statistics are not changed by the perturbation. This is done first within the random matrix model. Then it is shown by semiclassical techniques that the result is due to a cancellation between diagonal diffractive and off-diagonal periodic-diffractive contributions. The compensation is a very general phenomenon encoding the semiclassical content of the optical theorem.Comment: 11 pages, no figure

    Uniform approximation for diffractive contributions to the trace formula in billiard systems

    Full text link
    We derive contributions to the trace formula for the spectral density accounting for the role of diffractive orbits in two-dimensional billiard systems with corners. This is achieved by using the exact Sommerfeld solution for the Green function of a wedge. We obtain a uniformly valid formula which interpolates between formerly separate approaches (the geometrical theory of diffraction and Gutzwiller's trace formula). It yields excellent numerical agreement with exact quantum results, also in cases where other methods fail.Comment: LaTeX, 41 pages including 12 PostScript figures, submitted to Phys. Rev.

    On the structure and evolution of a polar crown prominence/filament system

    Full text link
    Polar crown prominences are made of chromospheric plasma partially circling the Suns poles between 60 and 70 degree latitude. We aim to diagnose the 3D dynamics of a polar crown prominence using high cadence EUV images from the Solar Dynamics Observatory (SDO)/AIA at 304 and 171A and the Ahead spacecraft of the Solar Terrestrial Relations Observatory (STEREO-A)/EUVI at 195A. Using time series across specific structures we compare flows across the disk in 195A with the prominence dynamics seen on the limb. The densest prominence material forms vertical columns which are separated by many tens of Mm and connected by dynamic bridges of plasma that are clearly visible in 304/171A two-color images. We also observe intermittent but repetitious flows with velocity 15 km/s in the prominence that appear to be associated with EUV bright points on the solar disk. The boundary between the prominence and the overlying cavity appears as a sharp edge. We discuss the structure of the coronal cavity seen both above and around the prominence. SDO/HMI and GONG magnetograms are used to infer the underlying magnetic topology. The evolution and structure of the prominence with respect to the magnetic field seems to agree with the filament linkage model.Comment: 24 pages, 14 figures, Accepted for publication in Solar Physics Journal, Movies can be found at http://www2.mps.mpg.de/data/outgoing/panesar

    Observations of Coronal Mass Ejections with the Coronal Multichannel Polarimeter

    Full text link
    The Coronal Multichannel Polarimeter (CoMP) measures not only the polarization of coronal emission, but also the full radiance profiles of coronal emission lines. For the first time, CoMP observations provide high-cadence image sequences of the coronal line intensity, Doppler shift and line width simultaneously in a large field of view. By studying the Doppler shift and line width we may explore more of the physical processes of CME initiation and propagation. Here we identify a list of CMEs observed by CoMP and present the first results of these observations. Our preliminary analysis shows that CMEs are usually associated with greatly increased Doppler shift and enhanced line width. These new observations provide not only valuable information to constrain CME models and probe various processes during the initial propagation of CMEs in the low corona, but also offer a possible cost-effective and low-risk means of space weather monitoring.Comment: 6 figures. Will appear in the special issue of Coronal Magnetism, Sol. Phy

    External and Turbomachinery Flow Control Working Group

    Get PDF
    Broad Flow Control Issues: a) Understanding flow physics. b) Specific control objective(s). c) Actuation. d) Sensors. e) Integrated active flow control system. f) Development of design tools (CFD, reduced order models, controller design, understanding and utilizing instabilities and other mechanisms, e.g., streamwise vorticity)

    Three-Dimensional Morphology of a Coronal Prominence Cavity

    Get PDF
    We present a three-dimensional density model of coronal prominence cavities, and a morphological fit that has been tightly constrained by a uniquely well-observed cavity. Observations were obtained as part of an International Heliophysical Year campaign by instruments from a variety of space- and ground-based observatories, spanning wavelengths from radio to soft-X-ray to integrated white light. From these data it is clear that the prominence cavity is the limb manifestation of a longitudinally-extended polar-crown filament channel, and that the cavity is a region of low density relative to the surrounding corona. As a first step towards quantifying density and temperature from campaign spectroscopic data, we establish the three-dimensional morphology of the cavity. This is critical for taking line-of-sight projection effects into account, since cavities are not localized in the plane of the sky and the corona is optically thin. We have augmented a global coronal streamer model to include a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. We have developed a semi-automated routine that fits ellipses to cross-sections of the cavity as it rotates past the solar limb, and have applied it to Extreme Ultraviolet Imager (EUVI) observations from the two Solar Terrestrial Relations Observatory (STEREO) spacecraft. This defines the morphological parameters of our model, from which we reproduce forward-modeled cavity observables. We find that cavity morphology and orientation, in combination with the viewpoints of the observing spacecraft, explains the observed variation in cavity visibility for the east vs. west limb

    Hot Explosions in the Cool Atmosphere of the Sun

    Full text link
    The solar atmosphere was traditionally represented with a simple one-dimensional model. Over the past few decades, this paradigm shifted for the chromosphere and corona that constitute the outer atmosphere, which is now considered a dynamic structured envelope. Recent observations by IRIS (Interface Region Imaging Spectrograph) reveal that it is difficult to determine what is up and down even in the cool 6000-K photosphere just above the solar surface: this region hosts pockets of hot plasma transiently heated to almost 100,000 K. The energy to heat and accelerate the plasma requires a considerable fraction of the energy from flares, the largest solar disruptions. These IRIS observations not only confirm that the photosphere is more complex than conventionally thought, but also provide insight into the energy conversion in the process of magnetic reconnection.Comment: published in Science 346, 1255726 (2014), 30 pages, 13 figures; for associated movie, see http://www2.mps.mpg.de/data/outgoing/peter/papers/2014-iris-eb/fig1-movie.mo
    • …
    corecore