264 research outputs found

    Elimination of onchocerciasis in Ecuador: findings of post-treatment surveillance.

    Get PDF
    BACKGROUND: The Esmeraldas focus of onchocerciasis in Ecuador expanded geographically during the 1980s and was associated with severe ocular and skin disease. Mass drug administration (MDA) with ivermectin started in 1991, initially once but later twice a year, in the principle endemic focus followed by all satellite foci. Treatment was stopped in 2009 when entomological assessments determined that transmission of Onchocerca volvulus had been interrupted. METHODS: Three years after the cessation of ivermectin treatment in 2012, as defined by the WHO guidelines for onchocerciasis elimination, blackfly collections were done in four sentinel sites in former hyperendemic areas. The presence of infective larvae in local vectors, Simulium exiguum and Simulum quadrivittatum, was assessed by detection of O. volvulus DNA by PCR. Additional flies captured in four extra-sentinel sites located in former hyper- and mesoendemic dispersed isolated areas were also assessed. RESULTS: The results from 68,310 captured blackflies, 40,114 from four sentinel villages in the previously hyperendemic areas (Corriente Grande, El Tigre, San Miguel on Río Cayapas and Naranjal on Río Canandé) and 28,197 from extra-sentinel locations, were all negative for the presence of O. volvulus. These extra-sentinel sites (Hualpí on Río Hoja Blanca, Capulí on Río Onzole, La Ceiba on Río Tululví and Medianía on Río Verde) were included to provide additional evidence of the impact of MDA on the transmission of O. volvulus in isolated endemic areas. CONCLUSIONS: Our data indicate that transmission of O. volvulus has been stopped in all endemic areas in Ecuador, including all satellite foci outside the main focus. These findings indicate that a strategy of ivermectin distribution twice a year to over 85% of the treatment-eligible population was effective in eliminating the infection from Ecuador in a focus with a highly competent primary vector, S. exiguum, and where the infection rates were equal to or greater than observed in many onchocerciasis foci in Africa

    Immunoglobulin κ Chain Allotypes (KM) in Onchocerciasis

    Get PDF
    GM and KM allotypes, powerful tools for genetic characterization of human populations, have been shown to play an important role in genetic predisposition to some infectious diseases. Two diverse racial groups-Afro-Ecuadorians and Amerindians-living in a single restricted geographical area of Ecuador, appear to have different risk factors for acquisition and clinical expression of onchocerciasis, a disease caused by the filarial parasite Onchocerca volvulus. In this study, GM and KM allotypes were determined in 25 Afro-Ecuadorians and 24 Amerindians infected with Onchocerca volvulus (INF) and in putative immune individuals (PI). In Afro-Ecuadorians, the frequency of the homozygous KM 3 phenotype was significantly decreased in INF as compared with the PI group (20 vs. 68%; P = 0.0012), while the frequency of the heterozygous KM 1,3 phenotype was increased in INF as compared with the PI subjects (48 vs 9%; P = 0.0044). These results suggest that in Afro- Ecuadorians KM 3 is associated with a lower relative risk (resistance), whereas KM 1,3 is associated with an increased risk (susceptibility) of onchocerciasis

    Enhancement of Stochastic Resonance in distributed systems due to a selective coupling

    Full text link
    Recent massive numerical simulations have shown that the response of a "stochastic resonator" is enhanced as a consequence of spatial coupling. Similar results have been analytically obtained in a reaction-diffusion model, using "nonequilibrium potential" techniques. We now consider a field-dependent diffusivity and show that the "selectivity" of the coupling is more efficient for achieving stochastic-resonance enhancement than its overall value in the constant-diffusivity case.Comment: 10 pgs (RevTex), 4 figures, submitted to Phys.Rev.Let

    Stochastic resonance between dissipative structures in a bistable noise-sustained dynamics

    Get PDF
    We study an extended system that without noise shows a monostable dynamics, but when submitted to an adequate multiplicative noise, an effective bistable dynamics arise. The stochastic resonance between the attractors of the \textit{noise-sustained dynamics} is investigated theoretically in terms of a two-state approximation. The knowledge of the exact nonequilibrium potential allows us to obtain the output signal-to-noise ratio. Its maximum is predicted in the symmetric case for which both attractors have the same nonequilibrium potential value.Comment: RevTex, 13 pages, 6 figures, accepted in Physical Review

    Macrofilaricides and onchocerciasis control, mathematical modelling of the prospects for elimination

    Get PDF
    BACKGROUND: In most endemic parts of the world, onchocerciasis (river blindness) control relies, or will soon rely, exclusively on mass treatment with the microfilaricide ivermectin. Worldwide eradication of the parasite by means of this drug is unlikely. Macrofilaricidal drugs are currently being developed for human use. METHODS: We used ONCHOSIM, a microsimulation mathematical model of the dynamics of onchocerciasis transmission, to explore the potentials of a hypothetical macrofilaricidal drug for the elimination of onchocerciasis under different epidemiological conditions, as characterized by previous intervention strategies, vectorial capacity and levels of coverage. RESULTS: With a high vector biting rate and poor coverage, a very effective macrofilaricide would appear to have a substantially higher potential for achieving elimination of the parasite than does ivermectin. CONCLUSIONS: Macrofilaricides have a substantially higher potential for achieving onchocerciasis elimination than ivermectin, but high coverage levels are still key. When these drugs become available, onchocerciasis elimination strategies should be reconsidered. In view of the impact of control efforts preceding the introduction of macrofilaricides on the success of elimination, it is important to sustain current control efforts

    Learning to Learn: Theta Oscillations Predict New Learning, which Enhances Related Learning and Neurogenesis

    Get PDF
    Animals in the natural world continuously encounter learning experiences of varying degrees of novelty. New neurons in the hippocampus are especially responsive to learning associations between novel events and more cells survive if a novel and challenging task is learned. One might wonder whether new neurons would be rescued from death upon each new learning experience or whether there is an internal control system that limits the number of cells that are retained as a function of learning. In this experiment, it was hypothesized that learning a task that was similar in content to one already learned previously would not increase cell survival. We further hypothesized that in situations in which the cells are rescued hippocampal theta oscillations (3–12 Hz) would be involved and perhaps necessary for increasing cell survival. Both hypotheses were disproved. Adult male Sprague-Dawley rats were trained on two similar hippocampus-dependent tasks, trace and very-long delay eyeblink conditioning, while recording hippocampal local-field potentials. Cells that were generated after training on the first task were labeled with bromodeoxyuridine and quantified after training on both tasks had ceased. Spontaneous theta activity predicted performance on the first task and the conditioned stimulus induced a theta-band response early in learning the first task. As expected, performance on the first task correlated with performance on the second task. However, theta activity did not increase during training on the second task, even though more cells were present in animals that had learned. Therefore, as long as learning occurs, relatively small changes in the environment are sufficient to increase the number of surviving neurons in the adult hippocampus and they can do so in the absence of an increase in theta activity. In conclusion, these data argue against an upper limit on the number of neurons that can be rescued from death by learning

    Journal of nanobiotechnology

    Get PDF
    BACKGROUND: Nanosuspensions are an important class of delivery system for vaccine adjuvants and drugs. Previously, we developed a nanosuspension consisting of the synthetic TLR4 ligand glucopyranosyl lipid adjuvant (GLA) and dipalmitoyl phosphatidylcholine (DPPC). This nanosuspension is a clinical vaccine adjuvant known as GLA-AF. We examined the effects of DPPC supplier, buffer composition, and manufacturing process on GLA-AF physicochemical and biological activity characteristics. RESULTS: DPPC from different suppliers had minimal influence on physicochemical and biological effects. In general, buffered compositions resulted in less particle size stability compared to unbuffered GLA-AF. Microfluidization resulted in rapid particle size reduction after only a few passes, and 20,000 or 30,000 psi processing pressures were more effective at reducing particle size and recovering the active component than 10,000 psi. Sonicated and microfluidized batches maintained good particle size and chemical stability over 6 months, without significantly altering in vitro or in vivo bioactivity of GLA-AF when combined with a recombinant malaria vaccine antigen. CONCLUSIONS: Microfluidization, compared to water bath sonication, may be an effective manufacturing process to improve the scalability and reproducibility of GLA-AF as it advances further in the clinical development pathway. Various sources of DPPC are suitable to manufacture GLA-AF, but buffered compositions of GLA-AF do not appear to offer stability advantages over the unbuffered composition

    Interaction of Rio1 Kinase with Toyocamycin Reveals a Conformational Switch That Controls Oligomeric State and Catalytic Activity

    Get PDF
    Rio1 kinase is an essential ribosome-processing factor required for proper maturation of 40 S ribosomal subunit. Although its structure is known, several questions regarding its functional remain to be addressed. We report that both Archaeoglobus fulgidus and human Rio1 bind more tightly to an adenosine analog, toyocamycin, than to ATP. Toyocamycin has antibiotic, antiviral and cytotoxic properties, and is known to inhibit ribosome biogenesis, specifically the maturation of 40 S. We determined the X-ray crystal structure of toyocamycin bound to Rio1 at 2.0 Å and demonstrated that toyocamycin binds in the ATP binding pocket of the protein. Despite this, measured steady state kinetics were inconsistent with strict competitive inhibition by toyocamycin. In analyzing this interaction, we discovered that Rio1 is capable of accessing multiple distinct oligomeric states and that toyocamycin may inhibit Rio1 by stabilizing a less catalytically active oligomer. We also present evidence of substrate inhibition by high concentrations of ATP for both archaeal and human Rio1. Oligomeric state studies show both proteins access a higher order oligomeric state in the presence of ATP. The study revealed that autophosphorylation by Rio1 reduces oligomer formation and promotes monomerization, resulting in the most active species. Taken together, these results suggest the activity of Rio1 may be modulated by regulating its oligomerization properties in a conserved mechanism, identifies the first ribosome processing target of toyocamycin and presents the first small molecule inhibitor of Rio1 kinase activity
    corecore