829 research outputs found
Thermal axion constraints in non-standard thermal histories
There is no direct evidence for radiation domination prior to big-bang
nucleosynthesis, and so it is useful to consider how constraints to
thermally-produced axions change in non-standard thermal histories. In the
low-temperature-reheating scenario, radiation domination begins at temperatures
as low as 1 MeV, and is preceded by significant entropy generation. Axion
abundances are then suppressed, and cosmological limits to axions are
significantly loosened. In a kination scenario, a more modest change to axion
constraints occurs. Future possible constraints to axions and low-temperature
reheating are discussed.Comment: Submitted conference proceedings, based on a talk presented at Dark
Matter '08 in Marina del Rey. Based on work discussed in
Phys.Rev.D77:085020,2008, as well as arXiv:0711.1352. Updated to correct
titl
Baryons still trace dark matter: probing CMB lensing maps for hidden isocurvature
Compensated isocurvature perturbations (CIPs) are primordial fluctuations
that balance baryon and dark-matter isocurvature to leave the total matter
density unperturbed. The effects of CIPs on the cosmic microwave background
(CMB) anisotropies are similar to those produced by weak lensing of the CMB:
smoothing of the power spectrum, and generation of non-Gaussian features.
Previous work considered the CIP effects on the CMB power-spectrum but
neglected to include the CIP effects on estimates of the lensing potential
power spectrum (though its contribution to the non-Gaussian, connected, part of
the CMB trispectrum). Here, the CIP contribution to the standard estimator for
the lensing potential power-spectrum is derived, and along with the CIP
contributions to the CMB power-spectrum, Planck data is used to place limits on
the root-mean-square CIP fluctuations on CMB scales, . The resulting constraint of using this new technique improves on past work by a factor of
. We find that for Planck data our constraints almost reach the
sensitivity of the optimal CIP estimator. The method presented here is
currently the most sensitive probe of the amplitude of a scale-invariant CIP
power spectrum placing an upper limit of at 95% CL. Future
measurements of the large-scale CMB lensing potential power spectrum could
probe CIP amplitudes as low as ().Comment: 24 pages, 9 figures; comments welcome; v2 references correcte
Baryons Still Trace Dark Matter: Probing CMB Lensing Maps For Hidden Isocurvature
Compensated isocurvature perturbations (CIPs) are primordial fluctuations that balance baryon and dark-matter isocurvature to leave the total matter density unperturbed. The effects of CIPs on the cosmic microwave background (CMB) anisotropies are similar to those produced by weak lensing of the CMB: smoothing of the power spectrum and generation of non-Gaussian features. Here, an entirely new CIP contribution to the standard estimator for the lensing-potential power spectrum is derived. Planck measurements of the temperature and polarization power spectrum, as well as estimates of CMB lensing, are used to place limits on the variance of the CIP fluctuations on CMB scales, Δ2rms(RCMB). The resulting constraint of Δ2rms(RCMB)\u3c4.3×10−3 at 95% confidence level (CL) using this new technique improves on past work by a factor of ∼3. We find that for Planck data our constraints almost reach the sensitivity of the optimal CIP estimator. The method presented here is currently the most sensitive probe of the amplitude of a scale-invariant CIP power spectrum, ACIP, placing an upper limit of ACIP\u3c0.017 at 95% CL. Future measurements of the large-scale CMB lensing-potential power spectrum could probe CIP amplitudes as low as Δ2rms(RCMB)=8×10−5 at 95% CL (corresponding to ACIP=3.2×10−4)
Probing Spatial Variation Of The Fine-Structure Constant Using The CMB
The fine-structure constant, α, controls the strength of the electromagnetic interaction. There are extensions of the standard model in which α is dynamical on cosmological length and time scales. The physics of the cosmic microwave background (CMB) depends on the value of α. The effects of spatial variation in α on the CMB are similar to those produced by weak lensing: smoothing of the power spectrum, and generation of non-Gaussian features. These would induce a bias to estimates of the weak-lensing potential power spectrum of the CMB. Using this effect, Planck measurements of the temperature and polarization power spectrum, as well as estimates of CMB lensing, are used to place limits (95% C.L.) on the amplitude of a scale-invariant angular power spectrum of α fluctuations relative to the mean value (CαL=AαSI/[L(L+1)]) of AαSI≤1.6×10−5. The limits depend on the assumed shape of the α-fluctuation power spectrum. For example, for a white-noise angular power spectrum (CαL=AαWN), the limit is AαWN≤2.3×10−8. It is found that the response of the CMB to α fluctuations depends on a separate-universe approximation, such that theoretical predictions are only reliable for α multipoles with L≲100. An optimal trispectrum estimator can be constructed and it is found that it is only marginally more sensitive than lensing techniques for Planck but significantly more sensitive when considering the next generation of experiments. For a future CMB experiment with cosmic-variance limited polarization sensitivity (e.g., CMB-S4), the optimal estimator could detect α fluctuations with AαSI\u3e1.9×10−6 and AαWN\u3e1.4×10−9
Search for Compensated Isocurvature Perturbations with Planck Power Spectra
In the standard inflationary scenario, primordial perturbations are
adiabatic. The amplitudes of most types of isocurvature perturbations are
generally constrained by current data to be small. If, however, there is a
baryon-density perturbation that is compensated by a dark-matter perturbation
in such a way that the total matter density is unperturbed, then this
compensated isocurvature perturbation (CIP) has no observable consequence in
the cosmic microwave background (CMB) at linear order in the CIP amplitude.
Here we search for the effects of CIPs on CMB power spectra to quadratic order
in the CIP amplitude. An analysis of the Planck temperature data leads to an
upper bound , at the 68\% confidence
level, to the variance of the CIP amplitude. This is then
strengthened to if Planck
small-angle polarization data are included. A cosmic-variance-limited CMB
experiment could improve the sensitivity to CIPs to . It is also found that adding CIPs to the
standard CDM model can improve the fit of the observed smoothing of
CMB acoustic peaks just as much as adding a non-standard lensing amplitude.Comment: 9 Pages, 3 Tables, 6 Figures. Accepted in PR
Superconductivity in the New Platinum Germanides MPt4Ge12 (M = Rare-earth and Alkaline-earth Metals) with Filled Skutterudite Structure
New germanium-platinum compounds with the filled-skutterudite crystal
structure were synthesized. The structure and composition were investigated by
X-ray diffraction and microprobe analysis. Magnetic susceptibility, specific
heat, and electrical resistivity measurements evidence superconductivity in
LaPt4Ge12 and PrPt4Ge12 below 8.3K. The parameters of the normal and
superconducting states were established. Strong coupling and a crystal electric
field singlet groundstate is found for the Pr compound. Electronic structure
calculations show a large density of states at the Fermi level. Similar
behavior with lower T_c was observed for SrPt4Ge12 and BaPt4Ge12.Comment: RevTeX, 4 figures, submitted to Physical Review Letters July 12, 200
High spin polarization in the ferromagnetic filled skutterudites KFe4Sb12 and NaFe4Sb12
The spin polarization of ferromagnetic alkali-metal iron antimonides KFe4Sb12
and NaFe4Sb12 is studied by point-contact Andreev reflection using
superconducting Nb and Pb tips. From these measurements an intrinsic transport
spin polarization Pt of 67% and 60% for the K and Na compound, respectively, is
inferred which establishes these materials as a new class of highly spin
polarized ferromagnets. The results are in accord with band structure
calculations within the local spin density approximation (LSDA) that predict
nearly 100% spin polarization in the density of states. We discuss the impact
of calculated Fermi velocities and spin fluctuations on Pt.Comment: Pdf file with fi
Inertial parameters and superfluid-to-normal phase transition in superdeformed bands
The quasiclassically exact solution for the second inertial parameter is found in self-consistent way. It is shown that superdeformation and
nonuniform pairing arising from the rotation induced pair density significantly
reduce this inertial parameter. The different limiting cases for ,
which allow to study an interplay between rapid rotation, pairing correlations,
and mean field deformation, are considered. The new signature for the
transition from pairing to normal phase is suggested in terms of the variation
of versus spin. Experimental data indicate the existence of
such transition in the three superdeformed mass regions.Comment: 8 pages, LaTeX, 3 figure
Radiative transfer effects in primordial hydrogen recombination
The calculation of a highly accurate cosmological recombination history has
been the object of particular attention recently, as it constitutes the major
theoretical uncertainty when predicting the angular power spectrum of Cosmic
Microwave Background anisotropies. Lyman transitions, in particular the
Lyman-alpha line, have long been recognized as one of the bottlenecks of
recombination, due to their very low escape probabilities. The Sobolev
approximation does not describe radiative transfer in the vicinity of Lyman
lines to a sufficient degree of accuracy, and several corrections have already
been computed in other works. In this paper, the impact of some previously
ignored radiative transfer effects is calculated. First, the effect of Thomson
scattering in the vicinity of the Lyman-alpha line is evaluated, using a full
redistribution kernel incorporated into a radiative transfer code. The effect
of feedback of distortions generated by the optically thick deuterium
Lyman-alpha line blueward of the hydrogen line is investigated with an analytic
approximation. It is shown that both effects are negligible during cosmological
hydrogen recombination. Secondly, the importance of high-lying, non overlapping
Lyman transitions is assessed. It is shown that escape from lines above
Ly-gamma and frequency diffusion in Ly-beta and higher lines can be neglected
without loss of accuracy. Thirdly, a formalism generalizing the Sobolev
approximation is developed to account for the overlap of the high-lying Lyman
lines, which is shown to lead to negligible changes to the recombination
history. Finally, the possibility of a cosmological hydrogen recombination
maser is investigated. It is shown that there is no such maser in the purely
radiative treatment presented here.Comment: 23 pages, 4 figures, to be submitted to PR
Local magnetism in MnSiPt rules the chemical bond
A crystal structure can be understood as a result of bonding interactions (covalent, ionic, van der Waals, etc.) between the constituting atoms. If the forces caused by these interactions are equilibrated, the so-stabilized crystal structure should have the lowest energy. In such an atomic configuration, additional weaker atomic interactions may further reduce the total energy, influencing the final atomic arrangement. Indeed, in the intermetallic compound MnSiPt, a 3D framework is formed by polar covalent bonds between Mn, Si, and Pt atoms. Without taking into account the local spin polarization of manganese atoms, they would form Mn–Mn bonds within the framework. Surprisingly, the local magnetic moments of manganese prevent the formation of Mn–Mn bonds, thus changing decisively and significantly the final atomic arrangement.Among intermetallic compounds, ternary phases with the simple stoichiometric ratio 1:1:1 form one of the largest families. More than 15 structural patterns have been observed for several hundred compounds constituting this group. This, on first glance unexpected, finding is a consequence of the complex mechanism of chemical bonding in intermetallic structures, allowing for large diversity. Their formation process can be understood based on a hierarchy of energy scales: The main share is contributed by covalent and ionic interactions in accordance with the electronic needs of the participating elements. However, smaller additional atomic interactions may still tip the scales. Here, we demonstrate that the local spin polarization of paramagnetic manganese in the new compound MnSiPt rules the adopted TiNiSi-type crystal structure. Combining a thorough experimental characterization with a theoretical analysis of the energy landscape and the chemical bonding of MnSiPt, we show that the paramagnetism of the Mn atoms suppresses the formation of Mn–Mn bonds, deciding between competing crystal structures
- …
