110 research outputs found

    Inertial gyre solutions from a primitive equation ocean model

    Get PDF
    A numerical exploration of inertial equilibrium states obtained with a primitive equation ocean model suggests that they can be described using statistical mechanics theory developed in the framework of quasi-geostrophy. The performance of the numerical model is first assessed with respect to the quasi-geostrophic model considering a series of experiments in the quasi-geostrophic range, in a closed basin with flat bottom and varying Rossby numbers. The results show that our model is consistent with the quasi-geostrophic model even in terms of dependence from boundary conditions and eddy viscosity values, and that the free surface contribution is negligible. As in the quasi-geostrophic experiments, a tendency toward Fofonoff flows is observed. This tendency remains in a second series of experiments performed outside the quasi-geostrophic range, namely with flows with higher Rossby numbers and with steep topography, characterized by sloping boundaries with an order one fractional change in the depth. It is only close to the boundaries that ageostrophic effects modify the flows. In conclusion, the fact that statistical mechanics theory, initially developed in the framework of quasi-geostrophy, holds for more realistic flows with steep topography supports development of subgrid scale parameterizations based on statistical mechanics theory, to be used in realistic general circulation models

    Effect of boundary vibration on the frictional behavior of a dense sheared granular layer

    Get PDF
    We report results of 3D discrete element method simulations aiming at investigating the role of the boundary vibration in inducing frictional weakening in sheared granular layers. We study the role of different vibration amplitudes applied at various shear stress levels, for a granular layer in the stick-slip regime and in the steady-sliding regime. Results are reported in terms of friction drops and kinetic energy release associated with frictional weakening events. We find that a larger vibration amplitude induces larger frictional weakening events. The results show evidence of a threshold below which no induced frictional weakening takes place. Friction drop size is found to be dependent on the shear stress at the time of vibration. A significant increase in the ratio between the number of slipping contacts to the number of sticking contacts in the granular layer is observed for large vibration amplitudes. These vibration-induced contact rearrangements enhance particle mobilization and induce a friction drop and kinetic energy release. This observation provides some insight into the grain-scale mechanisms of frictional weakening by boundary vibration in a dense sheared granular layer. In addition to characterizing the basic physics of vibration-induced shear weakening, we are attempting to understand how a fault fails in the earth under seismic wave forcing. This is the well-known phenomenon of dynamic earthquake triggering. We believe that the granular physics are key to this understanding

    Statistical mechanics of Fofonoff flows in an oceanic basin

    Get PDF
    We study the minimization of potential enstrophy at fixed circulation and energy in an oceanic basin with arbitrary topography. For illustration, we consider a rectangular basin and a linear topography h=by which represents either a real bottom topography or the beta-effect appropriate to oceanic situations. Our minimum enstrophy principle is motivated by different arguments of statistical mechanics reviewed in the article. It leads to steady states of the quasigeostrophic (QG) equations characterized by a linear relationship between potential vorticity q and stream function psi. For low values of the energy, we recover Fofonoff flows [J. Mar. Res. 13, 254 (1954)] that display a strong westward jet. For large values of the energy, we obtain geometry induced phase transitions between monopoles and dipoles similar to those found by Chavanis and Sommeria [J. Fluid Mech. 314, 267 (1996)] in the absence of topography. In the presence of topography, we recover and confirm the results obtained by Venaille and Bouchet [Phys. Rev. Lett. 102, 104501 (2009)] using a different formalism. In addition, we introduce relaxation equations towards minimum potential enstrophy states and perform numerical simulations to illustrate the phase transitions in a rectangular oceanic basin with linear topography (or beta-effect).Comment: 26 pages, 28 figure

    Network-Based Asymmetry of the Human Auditory System.

    Get PDF
    Converging evidence from activation, connectivity, and stimulation studies suggests that auditory brain networks are lateralized. Here we show that these findings can be at least partly explained by the asymmetric network embedding of the primary auditory cortices. Using diffusion-weighted imaging in 3 independent datasets, we investigate the propensity for left and right auditory cortex to communicate with other brain areas by quantifying the centrality of the auditory network across a spectrum of communication mechanisms, from shortest path communication to diffusive spreading. Across all datasets, we find that the right auditory cortex is better integrated in the connectome, facilitating more efficient communication with other areas, with much of the asymmetry driven by differences in communication pathways to the opposite hemisphere. Critically, the primacy of the right auditory cortex emerges only when communication is conceptualized as a diffusive process, taking advantage of more than just the topologically shortest paths in the network. Altogether, these results highlight how the network configuration and embedding of a particular region may contribute to its functional lateralization

    Coastal high-frequency radars in the Mediterranean - Part 1: Status of operations and a framework for future development

    Get PDF
    Due to the semi-enclosed nature of the Mediterranean Sea, natural disasters and anthropogenic activities impose stronger pressures on its coastal ecosystems than in any other sea of the world. With the aim of responding adequately to science priorities and societal challenges, littoral waters must be effectively monitored with high-frequency radar (HFR) systems. This land-based remote sensing technology can provide, in near-real time, fine-resolution maps of the surface circulation over broad coastal areas, along with reliable directional wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network and the future roadmap for orchestrated actions. Ongoing collaborative efforts and recent progress of this regional alliance are not only described but also connected with other European initiatives and global frameworks, highlighting the advantages of this cost-effective instrument for the multi-parameter monitoring of the sea state. Coordinated endeavors between HFR operators from different multi-disciplinary institutions are mandatory to reach a mature stage at both national and regional levels, striving to do the following: (i) harmonize deployment and maintenance practices; (ii) standardize data, metadata, and quality control procedures; (iii) centralize data management, visualization, and access platforms; and (iv) develop practical applications of societal benefit that can be used for strategic planning and informed decision-making in the Mediterranean marine environment. Such fit-for-purpose applications can serve for search and rescue operations, safe vessel navigation, tracking of marine pollutants, the monitoring of extreme events, the investigation of transport processes, and the connectivity between offshore waters and coastal ecosystems. Finally, future prospects within the Mediterranean framework are discussed along with a wealth of socioeconomic, technical, and scientific challenges to be faced during the implementation of this integrated HFR regional network

    Coastal high-frequency radars in the Mediterranean - Part 2: Applications in support of science priorities and societal needs

    Get PDF
    The Mediterranean Sea is a prominent climate-change hot spot, with many socioeconomically vital coastal areas being the most vulnerable targets for maritime safety, diverse met-ocean hazards and marine pollution. Providing an unprecedented spatial and temporal resolution at wide coastal areas, high-frequency radars (HFRs) have been steadily gaining recognition as an effective land-based remote sensing technology for continuous monitoring of the surface circulation, increasingly waves and occasionally winds. HFR measurements have boosted the thorough scientific knowledge of coastal processes, also fostering a broad range of applications, which has promoted their integration in coastal ocean observing systems worldwide, with more than half of the European sites located in the Mediterranean coastal areas. In this work, we present a review of existing HFR data multidisciplinary science-based applications in the Mediterranean Sea, primarily focused on meeting end-user and science-driven requirements, addressing regional challenges in three main topics: (i) maritime safety, (ii) extreme hazards and (iii) environmental transport process. Additionally, the HFR observing and monitoring regional capabilities in the Mediterranean coastal areas required to underpin the underlying science and the further development of applications are also analyzed. The outcome of this assessment has allowed us to provide a set of recommendations for future improvement prospects to maximize the contribution to extending science-based HFR products into societally relevant downstream services to support blue growth in the Mediterranean coastal areas, helping to meet the UN's Decade of Ocean Science for Sustainable Development and the EU's Green Deal goals
    corecore