4,549 research outputs found

    Magnetic interaction at an interface between manganite and other transition metal oxides

    Full text link
    A general consideration is presented for the magnetic interaction at an interface between a perovskite manganite and other transition metal oxides. The latter is specified by the electron number nn in the d3z2r2d_{3z^2-r^2} level as (d3z2r2)n(d_{3z^2-r^2})^n. Based on the molecular orbitals formed at the interface and the generalized Hund's rule, the sign of the magnetic interaction is rather uniquely determined. The exception is when the d3z2r2d_{3z^2-r^2} orbital is stabilized in the interfacial manganite layer neighboring to a (d3z2r2)1(d_{3z^2-r^2})^1 or (d3z2r2)2(d_{3z^2-r^2})^2 system. In this case, the magnetic interaction is sensitive to the occupancy of the Mn d3z2r2d_{3z^2-r2} orbital. It is also shown that the magnetic interaction between the interfacial Mn layer and the bulk region can be changed. Manganite-based heterostructures thus show a rich magnetic behavior. We also present how to generalize the argument including t2gt_{2g} orbitals.Comment: 7pages, 4 figures, 1 tabl

    Ferromagnetism and orbital order in a topological ferroelectric

    Full text link
    We explore via density functional calculations the magnetic doping of a topological ferroelectric as an unconventional route to multiferroicity. Vanadium doping of the layered perovskite La2_{2}Ti2_{2}O7_{7} largely preserves electric polarization and produces robust ferromagnetic order, hence proper multiferroicity. The marked tendency of dopants to cluster into chains results in an insulating character at generic doping. Ferromagnetism stems from the symmetry breaking of the multi-orbital V system via an unusual "antiferro"-orbital order, and from the host's low-symmetry layered structure.Comment: 4 pages, 3 figures; Physical Review Letters 109, in print (2012

    Electron Confinement, Orbital Ordering, and Orbital Moments in d0d^0-d1d^1 Oxide Heterostructures

    Full text link
    The (SrTiO3_3)m_m/(SrVO3_3)n_n d0d1d^0-d^1 multilayer system is studied with first principles methods through the observed insulator-to-metal transition with increasing thickness of the SrVO3_3 layer. When correlation effects with reasonable magnitude are included, crystal field splittings from the structural relaxations together with spin-orbit coupling (SOC) determines the behavior of the electronic and magnetic structures. These confined slabs of SrVO3_3 prefer QorbQ_{orb}=(π,π\pi,\pi) orbital ordering of z=0\ell_z = 0 and z=1\ell_z = -1 (jz=1/2j_z=-1/2) orbitals within the plane, accompanied by QspinQ_{spin}=(0,0) spin order (ferromagnetic alignment). The result is a SOC-driven ferromagnetic Mott insulator. The orbital moment of 0.75 μB\mu_B strongly compensates the spin moment on the z=1\ell_z = -1 sublattice. The insulator-metal transition for n=15n = 1 \to 5 (occurring between nn=4 and nn=5) is reproduced. Unlike in the isoelectronic d0d1d^0-d^1 TiO2_2/VO2_2 (rutile structure) system and in spite of some similarities in orbital ordering, no semi-Dirac point [{\it Phys. Rev. Lett.} {\bf 102}, 166803 (2009)] is encountered, but the insulator-to-metal transition occurs through a different type of unusual phase. For n=5 this system is very near (or at) a unique semimetallic state in which the Fermi energy is topologically determined and the Fermi surface consists of identical electron and hole Fermi circles centered at kk=0. The dispersion consists of what can be regarded as a continuum of radially-directed Dirac points, forming a "Dirac circle".Comment: 9 pages, 8 figure

    Reversible strain effect on the magnetization of LaCoO3 films

    Full text link
    The magnetization of ferromagnetic LaCoO3 films grown epitaxially on piezoelectric substrates has been found to systematically decrease with the reduction of tensile strain. The magnetization change induced by the reversible strain variation reveals an increase of the Co magnetic moment with tensile strain. The biaxial strain dependence of the Curie temperature is estimated to be below 4K/% in the as-grown tensile strain state of our films. This is in agreement with results from statically strained films on various substrates

    Anisotropic magnetoresistance in antiferromagnetic Sr2IrO4

    Get PDF
    We report point-contact measurements of anisotropic magnetoresistance (AMR) in a single crystal of antiferromagnetic (AFM) Mott insulator Sr2IrO4. The point-contact technique is used here as a local probe of magnetotransport properties on the nanoscale. The measurements at liquid nitrogen temperature revealed negative magnetoresistances (MRs) (up to 28%) for modest magnetic fields (250 mT) applied within the IrO2 a-b plane and electric currents flowing perpendicular to the plane. The angular dependence of MR shows a crossover from four-fold to two-fold symmetry in response to an increasing magnetic field with angular variations in resistance from 1-14%. We tentatively attribute the four-fold symmetry to the crystalline component of AMR and the field-induced transition to the effects of applied field on the canting of AFM-coupled moments in Sr2IrO4. The observed AMR is very large compared to the crystalline AMRs in 3d transition metal alloys/oxides (0.1-0.5%) and can be associated with the large spin-orbit interactions in this 5d oxide while the transition provides evidence of correlations between electronic transport, magnetic order and orbital states. The finding of this work opens an entirely new avenue to not only gain a new insight into physics associated with spin-orbit coupling but also better harness the power of spintronics in a more technically favorable fashion.Comment: 13 pages, 3 figure

    Research for preparation of cation-conducting solids by high-pressure synthesis and other methods

    Get PDF
    It was shown that two body-centered-cubic skeleton structures, the Im3 KSbO3 phase and the defect-pyrochlore phase A(+)B2X6, do exhibit fast Na(+)-ion transport. The placement of anions at the tunnel intersection sites does not impede Na(+)-ion transport in (NaSb)3)(1/6 NaF), and may not in (Na(1+2x)Ta2 5F)(Ox). The activation energies are higher than those found in beta-alumina. There are two possible explanations for the higher activation energy: breathing of the bottleneck (site face or edge) through which the A(+) ions must pass on jumping from one site to another may be easier in a layer structure and/or A(+)-O bonding may be stronger in the cubic structures because the O(2-) ion bonds with two (instead of three) cations of the skeleton. If the former explanation is dominant, a lower activation energy may be achieved by optimizing the lattice parameter. If the latter is dominant, a new structural principle may have to be explored

    Phase formation, phonon behavior, and magnetic properties of novel ferromagnetic La3BAlMnO9 (B = Co or Ni) triple perovskites

    Full text link
    In the quest for novel magnetoelectric materials, we have grown, stabilized and explored the properties of La3BAlMnO9 (B = Co or Mn) thin films. In this paper, we report the influence of the growth parameters that promote B/Al/Mn ordering in the pseudo-cubic unit cell and their likely influence on the magnetic and multiferroic properties. The temperature dependence of the magnetization shows that La3CoAlMnO9 is ferromagnetic up to 190 K while La3NiAlMnO9 shows a TC of 130 K. The behavior of these films are compared and contrasted with related La2BMnO6 double perovskites. It is observed that the insertion of AlO6 octahedra between CoO6 and MnO6 suppresses significantly the strength of the superexchange interaction, spin-phonon and spin-polar coupling.Comment: 13 pages, 3 fig

    Pressure effects on the magnetic structure in La0.5Ca0.5-xSrxMnO3 (0.1 -< x -< 0.4) manganites

    Full text link
    The effect of high pressure (0 - 8 GPa) on the magnetic structure of polycrystalline samples of La0.5Ca0.5-xSrxMnO3 (0.1 -< x -< 0.4) manganites at 5 K is investigated using neutron diffraction technique. Application of pressure is found to modify the previously reported magnetic structure, observed under ambient conditions, in these compounds [I. Dhiman et al., Phys. Rev. B 77, 094440 (2008)]. In x = 0.1 composition, at 4.6(2) GPa and beyond, A-type antiferromagnetic structure is found to coexist with CE-type antiferromagnetic phase, observed at ambient pressure, with TN ~ 150 K. For x = 0.3 sample, as a function of pressure the CE-type phase is fully suppressed at 2.3(1) GPa and A-type antiferromagnetic phase is favored. Further Sr doping at x = 0.4, the A-type antiferromagnetic phase is observed at ambient pressure and for T < TN (~ 250K). This phase is retained in the studied pressure range. However, the magnetic moment progressively reduces with increasing pressure, indicating the suppression of A-type antiferromagnetic phase. The present study brings out the fragile nature of the CE-type antiferromagnetic state in half doped manganites as a function of pressure and disorder \sigma 2. We observe that pressure required for destabilizing the CE-type antiferromagnetic state is reduced with increasing disorder \sigma 2. External pressure and changing A-site ionic radii have analogous effect on the magnetic structure.Comment: 9 pages, 6 figures, 1 table, To appear in Physical Review

    First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite

    Full text link
    We present a first-principles density functional study of the structural, electronic and magnetic properties of the ferroelectric domain walls in multiferroic BiFeO3. We find that domain walls in which the rotations of the oxygen octahedra do not change their phase when the polarization reorients are the most favorable, and of these the 109 degree domain wall centered around the BiO plane has the lowest energy. The 109 degree and 180 degree walls have a significant change in the component of their polarization perpendicular to the wall; the corresponding step in the electrostatic potential is consistent with a recent report of electrical conductivity at the domain walls. Finally, we show that changes in the Fe-O-Fe bond angles at the domain walls cause changes in the canting of the Fe magnetic moments which can enhance the local magnetization at the domain walls.Comment: 9 pages, 20 figure
    corecore